「自己組織化マップ」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
 
(同じ利用者による、間の2版が非表示)
2行目: 2行目:
<font size="+1">[https://researchmap.jp/altfluss 古川 徹生]</font><br>
<font size="+1">[https://researchmap.jp/altfluss 古川 徹生]</font><br>
九州工業大学 大学院生命体工学研究科 脳情報専攻<br>
九州工業大学 大学院生命体工学研究科 脳情報専攻<br>
DOI:<selfdoi /> 原稿受付日:2021年8月21日 原稿完成日:202X年X月X日<br>
DOI:<selfdoi /> 原稿受付日:2021年8月21日 原稿完成日:2022年1月7日<br>
担当編集委員:[https://researchmap.jp/wagaKBR_ 我妻 広明](九州工業大学大学院 生命体工学研究科 人間知能システム工学専攻)<br>
担当編集委員:[https://researchmap.jp/wagaKBR_ 我妻 広明](九州工業大学大学院 生命体工学研究科 人間知能システム工学専攻)<br>
</div>
</div>
英語 Self-Organizing Map, Kohonen map <br>
英:self-organizing map, Kohonen map <br>
略称 SOM<br>
英略称:SOM<br>
同義語 自己組織化写像<br>
同義語:自己組織化写像<br>


{{box|text= 自己組織化マップはT. Kohonenによって提案された教師なしニューラルネットの一種である。自己組織化マップはもともと大脳の機能局在の自己組織的な分化現象を説明する数理モデルに由来する。しかし、データ解析へ応用するため、ニューロン間の結合やダイナミクスが簡約化され、計算の効率化が図られている。自己組織化マップの学習原理はwinner-take-allによる競合学習とニューロンの空間的配置に基づく近傍学習の組み合わせである。自己組織化マップはデータの次元削減や可視化を行うニューラルネットであり、高次元データの可視化やデータマイニングなどの目的で幅広い分野で利用されてきた。}}
{{box|text= 自己組織化マップはT. Kohonenによって提案された教師なしニューラルネットの一種である。自己組織化マップはもともと大脳の機能局在の自己組織的な分化現象を説明する数理モデルに由来する。しかし、データ解析へ応用するため、ニューロン間の結合やダイナミクスが簡約化され、計算の効率化が図られている。自己組織化マップの学習原理はwinner-take-allによる競合学習とニューロンの空間的配置に基づく近傍学習の組み合わせである。自己組織化マップはデータの次元削減や可視化を行うニューラルネットであり、高次元データの可視化やデータマイニングなどの目的で幅広い分野で利用されてきた。}}
14行目: 14行目:
 [[大脳皮質]]には[[機能局在]]性があり、機能の類似する[[ニューロン]]は[[皮質]]上で隣接して分布することが知られる。また[[感覚]]系・[[運動]]系では身体的な空間的トポロジーが保存される[[トポグラフィックマッピング]]や[[体部位再現]]が知られる。これらの空間的な機能分化が自己組織的に生じる原理について、形式ニューロンを用いた数理モデルの研究が行われた。たとえばMarsburg<ref name=vonderMalsburg1973><pubmed>4786750</pubmed></ref>やAmari<ref name=Amari1980><pubmed>6246997</pubmed></ref>は外界からの刺激によりニューロンの機能局在と位相的な配置が自己組織化することを示した。
 [[大脳皮質]]には[[機能局在]]性があり、機能の類似する[[ニューロン]]は[[皮質]]上で隣接して分布することが知られる。また[[感覚]]系・[[運動]]系では身体的な空間的トポロジーが保存される[[トポグラフィックマッピング]]や[[体部位再現]]が知られる。これらの空間的な機能分化が自己組織的に生じる原理について、形式ニューロンを用いた数理モデルの研究が行われた。たとえばMarsburg<ref name=vonderMalsburg1973><pubmed>4786750</pubmed></ref>やAmari<ref name=Amari1980><pubmed>6246997</pubmed></ref>は外界からの刺激によりニューロンの機能局在と位相的な配置が自己組織化することを示した。


 このような空間的機能分化の自己組織化は2種に分けられる<ref name=Kohonen2006><pubmed>16774731</pubmed></ref>[5]
 このような空間的機能分化の自己組織化は2種に分けられる<ref name=Kohonen2006><pubmed>16774731</pubmed></ref>。


 タイプ1は[[レチノトピー]]を典型例とするトポグラフィックマッピングであり、入力が類似するニューロンが皮質上で近くに配置される自己組織化である。
 タイプ1は[[レチノトピー]]を典型例とするトポグラフィックマッピングであり、入力が類似するニューロンが皮質上で近くに配置される自己組織化である。
23行目: 23行目:


==ニューラルネットとしての自己組織化マップ==
==ニューラルネットとしての自己組織化マップ==
[[ファイル:Furukawa Self organizing map fig1.png|サムネイル|'''図1. 自己組織化マップによる動物マップ'''<br>表 1のデータをバッチ型自己組織化マップで学習した結果.哺乳類/鳥類,肉食/草 食,大型/小型などの動物の特徴に基づき,類似した動物の地図を作っている.このマップは U-matrix 法<ref name=Ultsch1993>'''A. Ultsch. (1993).'''<br>Self-organizing neural networks for visualization and classification. In O. Opitz, B. Lausen, and R. Klar, editors, Information and Classification, pages 307-313. Springer, Berlin.
[[ファイル:Furukawa Self organizing map fig1.png|サムネイル|'''図1. 自己組織化マップによる動物マップ'''<br>下表のデータをバッチ型自己組織化マップで学習した結果。哺乳類/鳥類、肉食/草 食、大型/小型などの動物の特徴に基づき、類似した動物の地図を作っている。このマップはU-matrix法<ref name=Ultsch1993>'''A. Ultsch. (1993).'''<br>Self-organizing neural networks for visualization and classification. In O. Opitz, B. Lausen, and R. Klar, editors, Information and Classification, pages 307-313. Springer, Berlin.
[https://doi.org/10.1007/978-3-642-50974-2_31 PDF]</ref>で色付けしており、赤い領域がクラスタ境界を表す。]]
[https://doi.org/10.1007/978-3-642-50974-2_31 PDF]</ref>で色付けしており、赤い領域がクラスタ境界を表す。]]
===入力と出力===
===入力と出力===
 自己組織化マップの入力は通常、高次元のベクトルデータセットである。一方、出力はデータセットを低次元(通常は2次元)に射影したものであり、データ分布を地図として可視化して見ることができる。また低次元マップ空間から高次元データ空間への写像も、学習によって得られる。
 自己組織化マップの入力は通常、高次元のベクトルデータセットである。一方、出力はデータセットを低次元(通常は2次元)に射影したものであり、データ分布を地図として可視化して見ることができる。また低次元マップ空間から高次元データ空間への写像も、学習によって得られる。


 '''図1'''は自己組織化マップにより得られた「動物マップ」である。入力データ(下)は16種の動物データであり、それぞれ15次元のベクトルで表されている。マップ上で類似する動物(哺乳類や鳥類、肉食や草食)は互いに近くに配置されている。
 '''図1'''は自己組織化マップにより得られた「動物マップ」である。入力データ('''''')は16種の動物データであり、それぞれ15次元のベクトルで表されている。マップ上で類似する動物(哺乳類や鳥類、肉食や草食)は互いに近くに配置されている。


 学習が終了した後、得られたマップは主に3つの用途で使うことができる。第一は、可視化によるデータマイニングである。動物マップの例ならば、どの動物が互いに似ているか、どのような動物クラスタ(類似する動物群)が存在するかを知ることができる。第二は新規データをマップ上へ射影することである。これにより新規データがマップのどこに位置するかを可視化できる。またラベル付き学習データを用いた場合は、新規データのラベルを推定することも可能である。動物マップの例ならば、新規の動物がマップのどこに位置するかを示したり、その動物が[[哺乳類]]か[[鳥類]]かを推測したりできる。第三は、新規データの予測や生成である。たとえば2種の中間的な性質を持つ動物の特徴を予測することができる。
 学習が終了した後、得られたマップは主に3つの用途で使うことができる。第一は、可視化によるデータマイニングである。動物マップの例ならば、どの動物が互いに似ているか、どのような動物クラスタ(類似する動物群)が存在するかを知ることができる。第二は新規データをマップ上へ射影することである。これにより新規データがマップのどこに位置するかを可視化できる。またラベル付き学習データを用いた場合は、新規データのラベルを推定することも可能である。動物マップの例ならば、新規の動物がマップのどこに位置するかを示したり、その動物が[[哺乳類]]か[[鳥類]]かを推測したりできる。第三は、新規データの予測や生成である。たとえば2種の中間的な性質を持つ動物の特徴を予測することができる。
43行目: 43行目:


===オンライン型アルゴリズム===
===オンライン型アルゴリズム===
 自己組織化マップの学習アルゴリズムは、[[競合]]・[[協調]]・[[適合]]という3プロセスの繰り返し計算である<ref name=Haykin1998>'''Haykin, S. (1998).'''<br>Neural Networks - A Comprehensive Foundation (2nd ed). Prentice Hall.</ref>[2]。時刻<math>t</math>における入力データを<math>x(t)</math>とすれば、それにもっとも近い参照ベクトルを持つニューロン<math>c(t)</math>が時刻<math>t</math>の勝者となる:
 自己組織化マップの学習アルゴリズムは、[[競合]]・[[協調]]・[[適合]]という3プロセスの繰り返し計算である<ref name=Haykin1998>'''Haykin, S. (1998).'''<br>Neural Networks - A Comprehensive Foundation (2nd ed). Prentice Hall.</ref>。時刻<math>t</math>における入力データを<math>x(t)</math>とすれば、それにもっとも近い参照ベクトルを持つニューロン<math>c(t)</math>が時刻<math>t</math>の勝者となる:


::<math>c(t)=arg\ m\underset{i}in||\mathbf{x}_{(t)}-\mathbf{m}_i(t)||</math>
::<math>c(t)=arg\ m\underset{i}in||\mathbf{x}_{(t)}-\mathbf{m}_i(t)||</math>
90行目: 90行目:
 自己組織化マップは高次元データを低次元に射影して可視化するため、[[次元削減法]]の一種とみることができる。したがって高次元データの可視化やデータマイニングのみを目的とする場合は、他の次元削減法、たとえばt-SNE<ref name=VanDerMaaten2008>'''L. Van Der Maaten and G. Hinton. (2008).'''<br>Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579-2625, 2008.</ref>、Isomap<ref name=Tenenbaum2000><pubmed>11125149</pubmed></ref>、Locally Linear Embedding <ref name=Roweis2000><pubmed>11125150</pubmed></ref>などでも代用できる。これらの手法と自己組織化マップの大きく異る点は、学習終了後、新規の入力データに対してもマップ上へ射影できること、および新規データの予測や生成ができるという点である。
 自己組織化マップは高次元データを低次元に射影して可視化するため、[[次元削減法]]の一種とみることができる。したがって高次元データの可視化やデータマイニングのみを目的とする場合は、他の次元削減法、たとえばt-SNE<ref name=VanDerMaaten2008>'''L. Van Der Maaten and G. Hinton. (2008).'''<br>Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579-2625, 2008.</ref>、Isomap<ref name=Tenenbaum2000><pubmed>11125149</pubmed></ref>、Locally Linear Embedding <ref name=Roweis2000><pubmed>11125150</pubmed></ref>などでも代用できる。これらの手法と自己組織化マップの大きく異る点は、学習終了後、新規の入力データに対してもマップ上へ射影できること、および新規データの予測や生成ができるという点である。


 新規データの射影・予測・生成も含めた自己組織化マップと等価な手法として、[[ガウス過程潜在変数モデル]](Gaussianprocess latent variable model, GPLVM)がある<ref name=Lawrence2004>'''N.D. Lawrence. (2004).''' Gaussian process latent variable models for visualisation of high dimensional data.</ref>。ガウス過程潜在変数モデルは[[ベイズ推論]]に基づくため柔軟な拡張が可能である。また[[教師なしカーネル回帰]](Unsupervisedkernelregression, UKR) は自己組織化マップと同じ目的関数を用いており、自己組織化マップの直接的な発展形と見ることができる<ref name=Meinicke2005><pubmed>16173183</pubmed></ref>[8]。マップ空間を離散化する自己組織化マップと異なり、ガウス過程潜在変数モデルと教師なしカーネル回帰は低次元空間を連続空間のまま扱える。また可視化を目的としないのであれば、[[変分オートエンコーダ]](Variational auto-encoder, VAE)も自己組織化マップと同じ機能を持つ。現在の[[機械学習]]・[[AI]]の分野では自己組織化マップに代わってこれらの手法、とりわけガウス過程潜在変数モデルと変分オートエンコーダが広く使われている。
 新規データの射影・予測・生成も含めた自己組織化マップと等価な手法として、[[ガウス過程潜在変数モデル]](Gaussianprocess latent variable model, GPLVM)がある<ref name=Lawrence2004>'''N.D. Lawrence. (2004).''' Gaussian process latent variable models for visualisation of high dimensional data.</ref>。ガウス過程潜在変数モデルは[[ベイズ推論]]に基づくため柔軟な拡張が可能である。また[[教師なしカーネル回帰]](Unsupervisedkernelregression, UKR) は自己組織化マップと同じ目的関数を用いており、自己組織化マップの直接的な発展形と見ることができる<ref name=Meinicke2005><pubmed>16173183</pubmed></ref>。マップ空間を離散化する自己組織化マップと異なり、ガウス過程潜在変数モデルと教師なしカーネル回帰は低次元空間を連続空間のまま扱える。また可視化を目的としないのであれば、[[変分オートエンコーダ]](Variational auto-encoder, VAE)も自己組織化マップと同じ機能を持つ。現在の[[機械学習]]・[[AI]]の分野では自己組織化マップに代わってこれらの手法、とりわけガウス過程潜在変数モデルと変分オートエンコーダが広く使われている。


==参考文献==
==参考文献==
<references />
<references />