「自己組織化マップ」の版間の差分

編集の要約なし
編集の要約なし
1行目: 1行目:
古川 徹生 九州工業大学
<div align="right"> 
 
<font size="+1">[https://researchmap.jp/altfluss 古川 徹生]</font><br>
九州工業大学 大学院生命体工学研究科 脳情報専攻<br>
DOI:<selfdoi /> 原稿受付日:2021年8月21日 原稿完成日:202X年X月X日<br>
担当編集委員:[https://researchmap.jp/wagaKBR_ 我妻 広明](九州工業大学大学院 生命体工学研究科 人間知能システム工学専攻)<br>
</div>
英語 Self-Organizing Map, Kohonen map <br>
英語 Self-Organizing Map, Kohonen map <br>
略称 SOM<br>
略称 SOM<br>
34行目: 38行目:
 自己組織化マップの学習アルゴリズムは、競合・協調・適合という3プロセスの繰り返し計算である<ref name=Haykin1998>'''Haykin, S. (1998).'''<br>Neural Networks - A Comprehensive Foundation (2nd ed). Prentice Hall.</ref> [2]。時刻 tにおける入力データをx(t)とすれば、それにもっとも近い参照ベクトルを持つニューロンc(t)が時刻tの勝者となる:
 自己組織化マップの学習アルゴリズムは、競合・協調・適合という3プロセスの繰り返し計算である<ref name=Haykin1998>'''Haykin, S. (1998).'''<br>Neural Networks - A Comprehensive Foundation (2nd ed). Prentice Hall.</ref> [2]。時刻 tにおける入力データをx(t)とすれば、それにもっとも近い参照ベクトルを持つニューロンc(t)が時刻tの勝者となる:


::<math>c(t)=arg\ m\underset{i}in||x(t)-mi(t)||.</math>
::<math>c(t)=arg\ m\underset{i}in||\mathbf{x}_{(t)}-\mathbf{m}_i(t)||</math>


これが競合プロセスである。
これが競合プロセスである。
56行目: 60行目:
 競合プロセスでは、全データに対する勝者をすべて求める。
 競合プロセスでは、全データに対する勝者をすべて求める。


::<math>∀n, cn(t) = arg min ∥xn − mi(t)i  
::<math>\forall n, c(t)=arg\ m\underset{i}in||\mathbf{x}_{(t)}-\mathbf{m}_i(t)||</math>
 
 続く協調プロセスでは、すべてのデータとニューロンの組み合わせについて学習量を決定する。
 
::<math>\forall n,i</math>   <math>h_{ni}(t) = h (c_n(t), i)</math>
 
 最後の適合プロセスでは、参照ベクトルを学習量の重み付き平均値へ更新する。
 
::<math>\forall i</math>   <math>\mathbf{m}_i(t+1):=\frac{\sum_nh_{ni}(t)\mathbf{x}_n}{\sum_{n'}h_{n'i}(t)}</math>


続く協調プロセスでは、すべてのデータとニューロンの組み合わせについて学習量を決定する。
 これらを収束するまで繰り返すのがバッチ型アルゴリズムである。オンライン型が数百ないし数千ステップの繰り返し計算が必要なのに対し、バッチ型は数十ステップで収束する。また学習結果の安定性についてもバッチ型が優れている。
∀n, i, hni(t) = h (cn(t), i) 最後の適合プロセスでは、参照ベクトルを学習量の重み付き平均値へ更新する。
n hni(t)xn ∀i, mi(t+1):= ∑
これらを収束するまで繰り返すのがバッチ型アルゴリズムである。オンライン型が数百ないし数千ステップの繰り返し計算が必要なのに対し、バッチ型は数十ステップで収束する。また学習結果の安定性についてもバッチ型が優れている。


=== 自己組織化マップの学習理論 ===
=== 自己組織化マップの学習理論 ===
68行目: 76行目:


===自己組織化マップと機械学習===
===自己組織化マップと機械学習===
 自己組織化マップは高次元データを低次元に射影して可視化するため、次元削減法の一種とみることができる。したがって高次元データの可視化やデータマイニングのみを目的とする場合は、他の次元削減法、たとえばt-SNE<ref name=VanDerMaaten2008>'''L. Van Der Maaten and G. Hinton. (2008).'''<br>Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579-2625, 2008.</ref>[12], Isomap<ref name=Tenenbaum2000><pubmed>11125149</pubmed></ref> [10], Locally Linear Embedding <ref name=Roweis2000><pubmed>11125150</pubmed></ref>[9]などでも代用できる。これらの手法と自己組織化マップの大きく異る点は、学習終了後、新規の入力データに対してもマップ上へ射影できること、および新規データの予測や生成ができるという点である。
 自己組織化マップは高次元データを低次元に射影して可視化するため、次元削減法の一種とみることができる。したがって高次元データの可視化やデータマイニングのみを目的とする場合は、他の次元削減法、たとえばt-SNE<ref name=VanDerMaaten2008>'''L. Van Der Maaten and G. Hinton. (2008).'''<br>Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579-2625, 2008.</ref>[12], Isomap<ref name=Tenenbaum2000><pubmed>11125149</pubmed></ref>[10], Locally Linear Embedding <ref name=Roweis2000><pubmed>11125150</pubmed></ref>[9]などでも代用できる。これらの手法と自己組織化マップの大きく異る点は、学習終了後、新規の入力データに対してもマップ上へ射影できること、および新規データの予測や生成ができるという点である。


 新規データの射影・予測・生成も含めた自己組織化マップと等価な手法として、ガウス過程潜在変数モデル(Gaussianprocess latent variable model, GPLVM)がある<ref name=Lawrence2004>'''N.D. Lawrence. (2004).''' Gaussian process latent variable models for visualisation of high dimensional data.</ref>[7]。GPLVMはベイズ推論に基づくため柔軟な拡張が可能である。また教師なしカーネル回帰(Unsupervisedkernelregression, UKR) は自己組織化マップと同じ目的関数を用いており、自己組織化マップの直接的な発展形と見ることができる<ref name=Meinicke2005><pubmed>16173183</pubmed></ref>[8]。マップ空間を離散化する自己組織化マップと異なり、GPLVMとUKRは低次元空間を連続空間のまま扱える。また可視化を目的としないのであれば、変分オートエンコーダ(Variational auto-encoder, VAE)も自己組織化マップと同じ機能を持つ。現在の機械学習・AIの分野では自己組織化マップに代わってこれらの手法が広く使われている。
 新規データの射影・予測・生成も含めた自己組織化マップと等価な手法として、ガウス過程潜在変数モデル(Gaussianprocess latent variable model, GPLVM)がある<ref name=Lawrence2004>'''N.D. Lawrence. (2004).''' Gaussian process latent variable models for visualisation of high dimensional data.</ref>[7]。GPLVMはベイズ推論に基づくため柔軟な拡張が可能である。また教師なしカーネル回帰(Unsupervisedkernelregression, UKR) は自己組織化マップと同じ目的関数を用いており、自己組織化マップの直接的な発展形と見ることができる<ref name=Meinicke2005><pubmed>16173183</pubmed></ref>[8]。マップ空間を離散化する自己組織化マップと異なり、GPLVMとUKRは低次元空間を連続空間のまま扱える。また可視化を目的としないのであれば、変分オートエンコーダ(Variational auto-encoder, VAE)も自己組織化マップと同じ機能を持つ。現在の機械学習・AIの分野では自己組織化マップに代わってこれらの手法が広く使われている。