「血液脳関門」の版間の差分

186行目: 186行目:
 理論的に、全てのトランスポーターに適用可能であり、有用な解析手法として期待されている。トランスポーターの輸送活性は、トランスポーター1分子あたりの輸送活性と分子数(タンパク質発現量, mol)の積に分解できる(図5)。従って、トランスポーター1分子あたりの輸送活性を''in vitro''実験によって測定し、ヒト死後脳から単離した脳毛細血管におけるトランスポーターのタンパク質発現量と統合することによって、''in vivo''のヒトBBBにおける輸送活性を再構築できる。この考え方を実証するために、マウスP-糖タンパク発現細胞単層膜で測定したP-糖タンパクの輸送活性をそのP-糖タンパク発現量で除することによってP-糖タンパク1分子あたりの輸送活性を算出した。これをマウス脳毛細血管におけるP-糖タンパク発現量と統合することによって、BBBのP-糖タンパク輸送活性を再構築した。その結果、異なる輸送活性を示す全11基質について再構築された輸送活性は実測値と良好に一致した(図5)<ref name="ref8" /> 。このように、''in vivo''のBBBにおける輸送活性を再構築できることが実験的に証明されている。この再構築の考え方をヒトに適用し、ヒトのトランスポーターの発現培養細胞における1分子輸送活性およびヒト脳毛細血管における発現量を測定することによって、ヒトBBBにおける種々のトランスポーターの輸送活性を解析できるようになると考えられている。  
 理論的に、全てのトランスポーターに適用可能であり、有用な解析手法として期待されている。トランスポーターの輸送活性は、トランスポーター1分子あたりの輸送活性と分子数(タンパク質発現量, mol)の積に分解できる(図5)。従って、トランスポーター1分子あたりの輸送活性を''in vitro''実験によって測定し、ヒト死後脳から単離した脳毛細血管におけるトランスポーターのタンパク質発現量と統合することによって、''in vivo''のヒトBBBにおける輸送活性を再構築できる。この考え方を実証するために、マウスP-糖タンパク発現細胞単層膜で測定したP-糖タンパクの輸送活性をそのP-糖タンパク発現量で除することによってP-糖タンパク1分子あたりの輸送活性を算出した。これをマウス脳毛細血管におけるP-糖タンパク発現量と統合することによって、BBBのP-糖タンパク輸送活性を再構築した。その結果、異なる輸送活性を示す全11基質について再構築された輸送活性は実測値と良好に一致した(図5)<ref name="ref8" /> 。このように、''in vivo''のBBBにおける輸送活性を再構築できることが実験的に証明されている。この再構築の考え方をヒトに適用し、ヒトのトランスポーターの発現培養細胞における1分子輸送活性およびヒト脳毛細血管における発現量を測定することによって、ヒトBBBにおける種々のトランスポーターの輸送活性を解析できるようになると考えられている。  


==関連項目==
(ございましたらご指摘下さい)
== 参考文献  ==
== 参考文献  ==