「血液脳関門」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:
== 歴史  ==
== 歴史  ==


細菌学者Paul Ehrlichは当時流行り始めた生体染色色素に興味を持ち、生きたウサギの血管内に色素を注射したところ、多くの臓器の組織染色に成功したが、中枢だけが染色できないことに気付いた。1885年に、この結果を「脳組織は染色色素を吸着する化学成分が欠乏している」と解釈した論文を発表した<ref>'''Ehrlich P.'''<br>Das Sauerstoff-Bedurfnis des Organismus: eine farbenanalytisch Studie<br>''Berlin: Hirschward'':1885</ref>。その後、弟子のEdwin Goldmanが、トリパンブルー(酸性色素)を脳室内に投与したところ、中枢組織は染まるが他の末梢臓器は染まらないことを見出した。Goldmanは、この結果を「中枢組織は染色し難い性質を持つという解釈は誤りで、脳は血管との間に色素を隔離する特性を有している」と解釈し、1913年に” Blut-Gehirn-Schranke”仮説を提唱した<ref>'''Goldman E.E.'''<br>Vitalfarbung am Zentralnervensystem<br>''Berlin: Eimer'':1993</ref>。この史実に基づき、「血液脳関門(Blood-Brain Barrier, BBB)の概念の提唱者はPaul Ehrlichである」と多くの教科書に書かれている。一方、Ridleyは、Ehrlichの実験から190年も遡った1695年に著書'The Anatomy of the Brain<ref>'''Ridley H.'''<br>The Anatomy of the Brain<br>''London: Printers to the Royal Society'':1695</ref>を発表し、その中で「水銀を血液内に投与すると、神経組織へ移行せずに血管内に留まっている。その原因は脳血管の密着性が、他の血管と大きく異なるからである。」と述べている。この歴史的発見を無視する訳にはいかない。「血液脳関門の最初の発見は、1695年、英国人の生理学者Humphrey Ridleyである」<ref><pubmed> 21349150 </pubmed></ref>という説に教科書を訂正する必要がある。このように320年前に英国で始まった血液脳関門の研究は、当初、「血液と脳を隔てる単なる物理的障壁」と考えられてきた。  
細菌学者Paul Ehrlichは当時流行り始めた生体染色色素に興味を持ち、生きたウサギの血管内に色素を注射したところ、多くの臓器の組織染色に成功したが、中枢だけが染色できないことに気付いた。1885年に、この結果を「脳組織は染色色素を吸着する化学成分が欠乏している」と解釈した論文を発表した<ref>'''Ehrlich P.'''<br>Das Sauerstoff-Bedurfnis des Organismus: eine farbenanalytisch Studie<br>''Berlin: Hirschward'':1885</ref>。その後、弟子のEdwin Goldmanが、トリパンブルー(酸性色素)を脳室内に投与したところ、中枢組織は染まるが他の末梢臓器は染まらないことを見出した。Goldmanは、この結果を「中枢組織は染色し難い性質を持つという解釈は誤りで、脳は血管との間に色素を隔離する特性を有している」と解釈し、1913年に” Blut-Gehirn-Schranke”仮説を提唱した<ref>'''Goldman E.E.'''<br>Vitalfarbung am Zentralnervensystem<br>''Berlin: Eimer'':1993</ref>。この史実に基づき、「血液脳関門(Blood-Brain Barrier, BBB)の概念の提唱者はPaul Ehrlichである」と多くの教科書に書かれている。一方、Humphrey Ridleyは、Ehrlichの実験から190年も遡った1695年に著書'The Anatomy of the Brain<ref>'''Ridley H.'''<br>The Anatomy of the Brain<br>''London: Printers to the Royal Society'':1695</ref>を発表し、その中で「水銀を血液内に投与すると、神経組織へ移行せずに血管内に留まっている。その原因は脳血管の密着性が、他の血管と大きく異なるからである。」と述べている。この歴史的発見を無視する訳にはいかない。「血液脳関門の最初の発見は、1695年、英国人の生理学者Humphrey Ridleyである」<ref><pubmed> 21349150 </pubmed></ref>という説に教科書を訂正する必要がある。このように320年前に英国で始まった血液脳関門の研究は、当初、「血液と脳を隔てる単なる物理的障壁」と考えられてきた。  


しかし近年では、分子生物学や、''in vitro''モデル細胞株の樹立など細胞生物的な手法の導入によって、BBBの機能は分子レベルでの解明が飛躍的に進んでいる。現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念へと塗り替えられている<ref name="ref1"><pubmed> 17619998 </pubmed></ref>。このBBBの機能は、薬という異物の脳移行を制限することから、中枢作用薬の開発成功率を大幅に下げる一因と位置づけられている。特に、がん細胞において抗がん剤耐性因子として同定されたP-糖タンパク(P-glycoprotein/ P-gp/ ABCB1/MDR1/mdr1a)が、「脳血管内皮細胞でエネルギーを消費して薬物を排出するポンプとして働いていること」を見出し、それまでの「400Daの分子篩説」<ref><pubmed> 7392035 </pubmed></ref>あるいは600Daの分子篩説」<ref><pubmed> 7765071 </pubmed></ref>に対して「能動的排出輸送担体説」<ref><pubmed> 1357522 </pubmed></ref>を提唱したことは、血液脳関門研究の歴史において重要な意義がある。その後、mdr1a knockout mouseを用いた研究によって<ref><pubmed> 7910522 </pubmed></ref>その排出輸送機能の生理的な重要性や薬物動態における重要性が明らかになった。その後、mdr1a以外にBreast Cancer Resistance Protein (BCRP/ABCG2/MXR/ABCP)<ref><pubmed> 15805252 </pubmed></ref><ref><pubmed> 12438926 </pubmed></ref><ref><pubmed> 15255930 </pubmed></ref><ref><pubmed> 16181433 </pubmed></ref>やMultidrug Resistance-associated Protein 4 (MRP4/ABCC4)<ref><pubmed> 15218051 </pubmed></ref><ref><pubmed> 19029202 </pubmed></ref><ref><pubmed> 20194529 </pubmed></ref>が、薬物や内因性物質などの排出ポンプとして重要な働きを担っていることが明らかになった。その他にもBBBに発現して物質輸送を担う多様なトランスポーターや受容体の分子レベルでの同定が進み、脳機能を支援・防御する動的インターフェースの一躍を担っていることが明らかにされ<ref name="ref1" />、BBBの受容体を標的とした薬物送達システムの開発も進んだ<ref><pubmed> 22929442 </pubmed></ref>。そして今、寺崎らが2008年に開発した機能性タンパク質の標的絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」<ref name="ref2"><pubmed> 18219561 </pubmed></ref><ref name="ref7"><pubmed> 21560129 </pubmed></ref>によって、BBBに発現するトランスポーターの定量アトラスが、マウス<ref name="ref2" /><ref name="ref4"><pubmed> 22401960 </pubmed></ref>、サル<ref name="ref5"><pubmed> 21254069 </pubmed></ref>、ヒト<ref name="ref6"><pubmed> 21291474 </pubmed></ref>で完成し、これらの定量情報を基にBBBのヒトと動物との種差が解明された。さらに、BBBにおけるトランスポーターの発現量と''in vitro''で計測可能な単分子活性を基にしたBBB物質輸送の再構築法<ref name="ref8"><pubmed> 21828264 </pubmed></ref>の開発が進んでおり、ヒトBBBにおける薬物を含めた物質輸送の予測系の基盤技術が構築されつつある。  
しかし近年では、分子生物学や、''in vitro''モデル細胞株の樹立など細胞生物的な手法の導入によって、BBBの機能は分子レベルでの解明が飛躍的に進んでいる。現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念へと塗り替えられている<ref name="ref1"><pubmed> 17619998 </pubmed></ref>。このBBBの機能は、薬という異物の脳移行を制限することから、中枢作用薬の開発成功率を大幅に下げる一因と位置づけられている。特に、がん細胞において抗がん剤耐性因子として同定されたP-糖タンパク(P-glycoprotein/ P-gp/ ABCB1/MDR1/mdr1a)が、「脳血管内皮細胞でエネルギーを消費して薬物を排出するポンプとして働いていること」を見出し、それまでの「400Daの分子篩説」<ref><pubmed> 7392035 </pubmed></ref>あるいは600Daの分子篩説」<ref><pubmed> 7765071 </pubmed></ref>に対して「能動的排出輸送担体説」<ref><pubmed> 1357522 </pubmed></ref>を提唱したことは、血液脳関門研究の歴史において重要な意義がある。その後、mdr1a knockout mouseを用いた研究によって<ref><pubmed> 7910522 </pubmed></ref>その排出輸送機能の生理的な重要性や薬物動態における重要性が明らかになった。その後、mdr1a以外にBreast Cancer Resistance Protein (BCRP/ABCG2/MXR/ABCP)<ref><pubmed> 15805252 </pubmed></ref><ref><pubmed> 12438926 </pubmed></ref><ref><pubmed> 15255930 </pubmed></ref><ref><pubmed> 16181433 </pubmed></ref>やMultidrug Resistance-associated Protein 4 (MRP4/ABCC4)<ref><pubmed> 15218051 </pubmed></ref><ref><pubmed> 19029202 </pubmed></ref><ref><pubmed> 20194529 </pubmed></ref>が、薬物や内因性物質などの排出ポンプとして重要な働きを担っていることが明らかになった。その他にもBBBに発現して物質輸送を担う多様なトランスポーターや受容体の分子レベルでの同定が進み、脳機能を支援・防御する動的インターフェースの一躍を担っていることが明らかにされ<ref name="ref1" />、BBBの受容体を標的とした薬物送達システムの開発も進んだ<ref><pubmed> 22929442 </pubmed></ref>。そして今、寺崎らが2008年に開発した機能性タンパク質の標的絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」<ref name="ref2"><pubmed> 18219561 </pubmed></ref><ref name="ref7"><pubmed> 21560129 </pubmed></ref>によって、BBBに発現するトランスポーターの定量アトラスが、マウス<ref name="ref2" /><ref name="ref4"><pubmed> 22401960 </pubmed></ref>、サル<ref name="ref5"><pubmed> 21254069 </pubmed></ref>、ヒト<ref name="ref6"><pubmed> 21291474 </pubmed></ref>で完成し、これらの定量情報を基にBBBのヒトと動物との種差が解明された。さらに、BBBにおけるトランスポーターの発現量と''in vitro''で計測可能な単分子活性を基にしたBBB物質輸送の再構築法<ref name="ref8"><pubmed> 21828264 </pubmed></ref>の開発が進んでおり、ヒトBBBにおける薬物を含めた物質輸送の予測系の基盤技術が構築されつつある。  
13行目: 13行目:
[[Image:Tachikawa fig 1.jpg|thumb|500px|図1 血液脳関門(Blood-brain barrier, BBB)の解剖学的実体]]  
[[Image:Tachikawa fig 1.jpg|thumb|500px|図1 血液脳関門(Blood-brain barrier, BBB)の解剖学的実体]]  


脳は、高度な神経活動のためシナプス周辺の環境が、BBBによって厳密に制御されている。BBBの解剖学的実体は脳毛細血管であり、内皮細胞同士が密着結合(tight junction)で連結している (図1)。密着結合構成タンパク質には、クローディン、オクルディンなどが知られている。一部の内皮細胞には、周皮細胞pericyteが接着し、その大部分を星状膠細胞の足突起が覆っている (図1)。このようなBBBの構造的特徴によって、血液構成成分や投与薬物の内皮細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している。ただし例外的として、終校器官、脳弓下器官、交連下器官、視床下部正中隆起、松果体、下垂体後葉、最終野では、毛細血管内皮細胞が密着結合で連結していないため、末梢血管と同様に血液とこれらの組織間の物質の移動は比較的自由である。これは、ゴールドマンがトリパンブルーを血管内に投与した実験において、一部の脳内部位が染色された要因であった可能性が高い。ヒトの脳毛細血管の全長は約650km、表面積は約9m<sup>2</sup>である一方、全脳に占める脳毛細血管内皮細胞の容積はわずか0.1%である。脳の毛細血管は平均40µmの間隔で網目状に張り巡らされていることから、分子量数百程度の物質は脳毛細血管を通過後、速やかに拡散して、脳実質細胞に到達可能である。血液と脳実質細胞間液の物質交換は、様々な輸送システムによって制御されている (図2)。この輸送系の分子的実体は、多様なトランスポーターや受容体、及びその複合体であり、脳毛細血管内皮細胞の脳血液側と脳側の細胞膜に極性をもって発現する。トランスポーターは、脳血液側と脳側の細胞膜のどちらか一方又は、両方の細胞膜に局在し、細胞外から細胞内、又は細胞内から細胞外へ、特定の基質を輸送する能力を有している。トランスポーターは、大きく2つのファミリーに分類される。1つは、ATP-binding cassette (ABC) transporterファミリーで、ATPの加水分解エネルギーを直接利用して、主に細胞内から細胞外への輸送を担う。 もう1つは、solute carrier (SLC)ファミリーで、エネルギーを消費しないで濃度勾配に従って下り坂輸送を行う促進拡散や、無機イオンや有機イオンの濃度勾配を利用して、濃度勾配に逆らった基質輸送を行う2次性能動輸送に関与する。受容体はトランスサイトーシスによって、リガンドを輸送する機能を有している。これらのトランスポーターや受容体が協同的に働くことによって、循環血液から脳への供給方向及び、脳から循環血液への排出方向の物質のベクトル輸送を厳密に制御している。  
脳は、高度な神経活動のためシナプス周辺の環境が、BBBによって厳密に制御されている。BBBの解剖学的実体は脳毛細血管であり、内皮細胞同士が密着結合(tight junction)で連結している (図1)。密着結合構成タンパク質には、クローディン、オクルディンなどが知られている。一部の内皮細胞には、周皮細胞pericyteが接着し、その大部分を星状膠細胞の足突起が覆っている (図1)。このようなBBBの構造的特徴によって、血液構成成分や投与薬物の内皮細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している。ただし例外として、終校器官、脳弓下器官、交連下器官、視床下部正中隆起、松果体、下垂体後葉、最終野では、毛細血管内皮細胞が密着結合で連結していないため、末梢血管と同様に血液とこれらの組織間の物質の移動は比較的自由である。これは、Goldmanがトリパンブルーを血管内に投与した実験において、一部の脳内部位が染色された要因であった可能性が高い。ヒトの脳毛細血管の全長は約650km、表面積は約9m<sup>2</sup>である一方、全脳に占める脳毛細血管内皮細胞の容積はわずか0.1%である。脳の毛細血管は平均40µmの間隔で網目状に張り巡らされていることから、分子量数百程度の物質は脳毛細血管を通過後、速やかに拡散して、脳実質細胞に到達可能である。血液と脳実質細胞間液の物質交換は、様々な輸送システムによって制御されている (図2)。この輸送系の分子的実体は、多様なトランスポーターや受容体、及びその複合体であり、脳毛細血管内皮細胞の脳血液側と脳側の細胞膜に極性をもって発現する。トランスポーターは、脳血液側と脳側の細胞膜のどちらか一方又は、両方の細胞膜に局在し、細胞外から細胞内、又は細胞内から細胞外へ、特定の基質を輸送する能力を有している。トランスポーターは、大きく2つのファミリーに分類される。1つは、ATP-binding cassette (ABC) transporterファミリーで、ATPの加水分解エネルギーを直接利用して、主に細胞内から細胞外への輸送を担う。 もう1つは、solute carrier (SLC)ファミリーで、エネルギーを消費しないで濃度勾配に従って下り坂輸送を行う促進拡散や、無機イオンや有機イオンの濃度勾配を利用して、濃度勾配に逆らった基質輸送を行う2次性能動輸送に関与する。受容体はトランスサイトーシスによって、リガンドを輸送する機能を有している。これらのトランスポーターや受容体が協同的に働くことによって、循環血液から脳への供給方向及び、脳から循環血液への排出方向の物質のベクトル輸送を厳密に制御している。  


[[Image:Tachikawa fig 2.jpg|thumb|500px|図2 血液脳関門(Blood-brain barrier, BBB)における物質輸送システム (SLCトランスポーター, Solute carrierファミリートランスポーター ; ABCトランスポーター, ATP-binding cassetteトランスポーター)]]  
[[Image:Tachikawa fig 2.jpg|thumb|500px|図2 血液脳関門(Blood-brain barrier, BBB)における物質輸送システム (SLCトランスポーター, Solute carrierファミリートランスポーター ; ABCトランスポーター, ATP-binding cassetteトランスポーター)]]  
93

回編集