「視覚前野」の版間の差分

編集の要約なし
(,)
編集の要約なし
30行目: 30行目:


===背側視覚路===
===背側視覚路===
 外側膝状体の[[大細胞系]]([[M経路]])由来の入力を受け、その性質(色選択性が無い、輝度コントラスト感度が高い、時間分解能が高い、空間分解能が低い)を引き継ぐ<ref name=ref1><pubmed>3746412</pubmed></ref><ref><pubmed>7931532</pubmed></ref>。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。V2(広線条部)、V3、V5/MT、V6を介して後頭頂葉へ向う。領野間の結合は[[有髄線維]]により伝導速度が速く、[[ミエリン]]染色で濃く染まる。V1より各領野へ直接投射があり、視覚刺激の呈示開始よりニューロンの反応が生じるまでの時間(潜時)を比較しても領野間の差がほとんどない<ref name=refa><pubmed>9636126</pubmed></ref>。[[MT]]はドットパターンの一次元の運動方向や注視面を基準とする両眼視差に選択性を示す。その上位にある[[MSTd]]は運動方向の変化(ドットパターンの発散、収縮、回転)に選択性を示す<ref><pubmed>9751663</pubmed></ref>。[[MST]]、[[VIP]]、[[7a]]への出力は[[オプティカルフロー]]のような3次元空間での動きの知覚に関与するとされる。一方、V3、V6は両眼視差の変化(3次元方向の運動)に選択性を示す。V6a、LIPへの出力は空間の立体構造や3次元空間での位置関係を表し、視線の移動や物体の把持や操作に利用される<ref><pubmed>10805708</pubmed></ref>。その際は、必ずしも刺激が意識されているわけではない。視覚前野では、刺激物体の動きと眼球や頭部の動きから生じる見かけの動きとはまだ区別されない(V3A、V6の一部のニューロンを除く)。
 外側膝状体の[[大細胞系]]([[M経路]])由来の入力を受け、その性質(色選択性が無い、輝度コントラスト感度が高い、時間分解能が高い、空間分解能が低い)を引き継ぐ<ref name=ref1><pubmed>3746412</pubmed></ref><ref><pubmed>7931532</pubmed></ref>。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。V2(太い縞)、V3、V5/MT、V6を介して後頭頂葉へ向う。領野間の結合は[[有髄線維]]により伝導速度が速く、[[ミエリン]]染色で濃く染まる。V1より各領野へ直接投射があり、視覚刺激の呈示開始よりニューロンの反応が生じるまでの時間(潜時)を比較しても領野間の差がほとんどない<ref name=refa><pubmed>9636126</pubmed></ref>。[[MT]]はドットパターンの一次元の運動方向や注視面を基準とする両眼視差に選択性を示す。その上位にある[[MSTd]]は運動方向の変化(ドットパターンの発散、収縮、回転)に選択性を示す<ref><pubmed>9751663</pubmed></ref>。[[MST]]、[[VIP]]、[[7a]]への出力は[[オプティカルフロー]]のような3次元空間での動きの知覚に関与するとされる。一方、V3、V6は両眼視差の変化(3次元方向の運動)に選択性を示す。V6a、LIPへの出力は空間の立体構造や3次元空間での位置関係を表し、視線の移動や物体の把持や操作に利用される<ref><pubmed>10805708</pubmed></ref>。その際は、必ずしも刺激が意識されているわけではない。視覚前野では、刺激物体の動きと眼球や頭部の動きから生じる見かけの動きとはまだ区別されない(V3A、V6の一部のニューロンを除く)。


===腹側視覚路===
===腹側視覚路===
 外側膝状体の大細胞系(M経路)と[[小細胞系]]([[P経路]])から同程度の入力を受け、さらに[[顆粒細胞系]]([[K経路]])由来の入力も受けて<ref><pubmed>1525550</pubmed></ref>、多様な刺激特徴に選択性を示す。色情報はP経路を介して専ら腹側視覚路に伝えられるが、V4ニューロンの約半数しか色選択性を示さない。高次の領野ほど潜時が遅い<ref name=refa />。V2(狭線条部、線条間部)からV4を介して下側頭葉([[TEO]]、[[TE]])へ向う。視覚前野は傾きの変化(輪郭線の折れ曲がり(V2)、[[wikipedia:ja:円弧|円弧]]、非カルテジアン図形(同心円、らせん、双曲線)、[[wikipedia:ja:フーリエ図形|フーリエ図形]]などの曲線(V4))や両眼視差の変化(受容野内外の相対視差(V2、V4)<ref><pubmed>10899190</pubmed></ref>、3次元方向の線や平面の傾き(V3、V4))に選択性を示す。V1が輝度対比や色対比<ref><pubmed>10530750</pubmed></ref>([[色覚]]を参照)に反応するのに対して、特定の色相や彩度(V2、V4)<ref><pubmed>12556893</pubmed></ref>、平面のテクスチャやパターン(V4)に選択性を示す。下側頭葉には、複雑な輪郭線の形状、物体表面の曲面、手や顔のようなもっと複雑な刺激に選択性を示すものがある。下側頭葉への出力は物体の認識や表象(意識に上らせること)に関与するとされる<ref><pubmed>6470767</pubmed></ref><ref><pubmed>1448150</pubmed></ref><ref><pubmed>8201425</pubmed></ref><ref><pubmed>16785255</pubmed></ref>。
 外側膝状体の大細胞系(M経路)と[[小細胞系]]([[P経路]])から同程度の入力を受け、さらに[[顆粒細胞系]]([[K経路]])由来の入力も受けて<ref><pubmed>1525550</pubmed></ref>、多様な刺激特徴に選択性を示す。色情報はP経路を介して専ら腹側視覚路に伝えられるが、V4ニューロンの約半数しか色選択性を示さない。高次の領野ほど潜時が遅い<ref name=refa />。V2(細い縞、淡い縞)からV4を介して下側頭葉([[TEO]]、[[TE]])へ向う。視覚前野は傾きの変化(輪郭線の折れ曲がり(V2)、[[wikipedia:ja:円弧|円弧]]、非カルテジアン図形(同心円、らせん、双曲線)、[[wikipedia:ja:フーリエ図形|フーリエ図形]]などの曲線(V4))や両眼視差の変化(受容野内外の相対視差(V2、V4)<ref><pubmed>10899190</pubmed></ref>、3次元方向の線や平面の傾き(V3、V4))に選択性を示す。V1が輝度対比や色対比<ref><pubmed>10530750</pubmed></ref>([[色覚]]を参照)に反応するのに対して、特定の色相や彩度(V2、V4)<ref><pubmed>12556893</pubmed></ref>、平面のテクスチャやパターン(V4)に選択性を示す。下側頭葉には、複雑な輪郭線の形状、物体表面の曲面、手や顔のようなもっと複雑な刺激に選択性を示すものがある。下側頭葉への出力は物体の認識や表象(意識に上らせること)に関与するとされる<ref><pubmed>6470767</pubmed></ref><ref><pubmed>1448150</pubmed></ref><ref><pubmed>8201425</pubmed></ref><ref><pubmed>16785255</pubmed></ref>。


==重層的なネットワークと視覚情報の修飾==
==重層的なネットワークと視覚情報の修飾==
40行目: 40行目:


===非古典的受容野からの修飾===
===非古典的受容野からの修飾===
 視覚前野のニューロンは受容野外に呈示されて視覚刺激に反応することはない。しかし、V1と同様に受容野の周囲に広がる非古典的受容野より刺激特徴に選択的な修飾作用を受けるものがある。V2のニューロンには最適刺激を受容野にまで拡大すると、むしろ反応が抑制されるものがある(周辺抑制)。一方、受容野内の刺激と受容野外の刺激を組みあわせにより、むしろ反応が増強(促通)するものもある。V2では受容野外に並ぶ線分の直列性に依存して、受容野に呈示した線分への反応が増強される(文脈依存性修飾作用、contextual modulation)<ref><pubmed>11050142</pubmed></ref>。また周辺抑制の分布が不均一なために、受容野を横切る輪郭線の形状、縞模様の変化、境界線を挟んだ図と地の向き対して選択的な反応を示すことが示されている<ref name=refb><pubmed>11967544</pubmed></ref><ref><pubmed>16768360</pubmed></ref><ref name=refc><pubmed>21091803</pubmed></ref>。V4やV5/MTにも最適な刺激を受容野外にまで拡大すると反応が抑制されるニューロンがあり、受容野内外の奥行きや運動の対比が強調しているとされる<ref name=ref6><pubmed>2213146</pubmed></ref><ref><pubmed>7479984</pubmed></ref><ref><pubmed>11068007</pubmed></ref>([[受容野]]を参照)。
 視覚前野のニューロンは受容野外に呈示されて視覚刺激に反応することはない。しかし、V1と同様に受容野の周囲に広がる非古典的受容野より刺激特徴に選択的な修飾作用を受けるものがある。V2のニューロンには最適刺激を受容野にまで拡大すると、むしろ反応が抑制されるものがある(周辺抑制)。一方、受容野内の刺激と受容野外の刺激を組みあわせにより、むしろ反応が増強(促通)するものもある。V2では受容野外に並ぶ線分の直列性に依存して、受容野に呈示した線分への反応が増強される(文脈依存性修飾作用、contextual modulation)<ref><pubmed>11050142</pubmed></ref>。またV2には受容野を横切る輪郭線の形状、縞模様の変化、境界線を挟んだ図と地の向き対して選択的な反応を示すニューロンがあり、そうした選択性が周辺抑制の不均一な分布によることが示されている<ref name=refb><pubmed>11967544</pubmed></ref><ref><pubmed>16768360</pubmed></ref><ref name=refc><pubmed>21091803</pubmed></ref>。V4やV5/MTにも最適な刺激を受容野外にまで拡大すると反応が抑制されるニューロンがあり、受容野内外の奥行きや運動(向き、速度)の対比に反応するとされる<ref name=ref6><pubmed>2213146</pubmed></ref><ref><pubmed>7479984</pubmed></ref><ref><pubmed>11068007</pubmed></ref>([[受容野]]を参照)。


===大局的な情報===
===大局的な情報===
47行目: 47行目:
====主観的輪郭====
====主観的輪郭====
subjective contour
subjective contour
:[[wikipedia:ja:カニッツァの三角形|カニッツァの三角形]]や縞模様の端部では、刺激や端点の配列から存在しない面や輪郭線を知覚できる。この主観的輪郭線の傾きに選択的に反応するニューロンがV2で見つかっている<ref><pubmed>6539501</pubmed></ref><ref><pubmed>2723747</pubmed></ref><ref><pubmed>2723748</pubmed></ref>。
:[[wikipedia:ja:カニッツァの三角形|カニッツァの三角形]]や縞模様の端部では、刺激や端点の配列から存在しない面や輪郭線を知覚できる。こうした主観的輪郭線の傾きに選択的に反応するニューロンがV2で見つかっている<ref><pubmed>6539501</pubmed></ref><ref><pubmed>2723747</pubmed></ref><ref><pubmed>2723748</pubmed></ref>。


====境界線の帰属====
====境界線の帰属====
55行目: 55行目:
====逆相関ステレオグラム====
====逆相関ステレオグラム====
anti-correlated stereogram
anti-correlated stereogram
:ドットパターンによりある奥行きを持つ面を表す。点刺激の輝度コントラストを左右の目で逆にすると、点刺激は見えても対応付けられず、奥行きをもった面を知覚できなくなる(両眼視差の対応問題、corresponding problem)。V2ドットパターンによりある奥行きを持つ面を表すV2、V4のニューロンで反応が減弱することが、これと合致する<ref><pubmed>12597865</pubmed></ref><ref><pubmed>15371518</pubmed></ref><ref><pubmed>17959744</pubmed></ref>。
:ドットパターンによりある奥行きを持つ面を表す。点刺激の輝度コントラストを左右の目で逆にすると、点刺激は見えても対応付けられず、奥行きをもった面を知覚できなくなる(両眼視差の対応問題、corresponding problem)。V2、V4にはある奥行きを持った面に選択的に反応するニューロンがあり、点刺激の輝度コントラストを左右の目で逆にするとニューロンの反応が減弱することが報告されている<ref><pubmed>12597865</pubmed></ref><ref><pubmed>15371518</pubmed></ref><ref><pubmed>17959744</pubmed></ref>。


====色の恒常性、明るさの恒常性====
====色の恒常性、明るさの恒常性====
:刺激の波長成分は視覚刺激の反射特性と照明光により決まるが、[[wikipedia:ja:モンドリアン|モンドリアン]]のように受容野の周囲に異なる色の刺激を同時に呈示すると、照明条件によらない色相や輝度への選択性を示すものがV4に見つかっている<ref><pubmed>6134287</pubmed></ref>。
:刺激の波長成分は視覚刺激の反射特性と照明光により決まるが、[[wikipedia:ja:モンドリアン|モンドリアン]]のように受容野の周囲に異なる色の刺激を同時に呈示すると、照明条件によらない色相や輝度への選択性を示すものがV4に見つかっている<ref><pubmed>6134287</pubmed></ref>。


====窓問題====
====窓枠問題====
aperture problem
aperture problem
:線や縞模様の端点を隠すと、実際の運動方向ではなく、運動速度の最も低い法線方向への運動が知覚される<ref>'''J A Movshon, E H Adelson, M S Gizzi, W T Newsome'''<br>The analysis of moving visual patterns.<br>''Study Group on Pattern Recognition Mechanisms'' (C Chagas, R Gattas, C Gross, eds. Vatican City: Pontifica Academia Scientiarum, pp.117-151,1985.</ref>。一方、縞模様が長方形の枠内を動くと、長辺沿いの端点の動きを運動方向として知覚する(バーバーポール錯視)。MTには法線方向の動きよりも受容野外の枠沿いの端点の運動方向に選択性を示すものがある<ref><pubmed>15056706</pubmed></ref>。
:円形の窓を通してある方向に動いている線刺激や縞模様を見ると端点の動きが隠される。この時、実際の運動方向ではなく運動速度の最も低い法線方向への運動が知覚される。一方、長方形の窓を通して動く縞模様を見ると、長辺沿いの端点の動きを運動方向として知覚する(バーバーポール錯視)。V5/MTには線刺激や縞模様の運動方向に選択的に反応するニューロンがあり、刺激の端点が受容野外にあるときには法線方向の動きに反応する。その中には、受容野外に長方形の枠を呈示すると、枠沿いの端点の運動方向に選択性を示すものがある<ref>'''J A Movshon, E H Adelson, M S Gizzi, W T Newsome'''<br>The analysis of moving visual patterns.<br>''Study Group on Pattern Recognition Mechanisms'' (C Chagas, R Gattas, C Gross, eds. Vatican City: Pontifica Academia Scientiarum, pp.117-151,1985.</ref><ref><pubmed>15056706</pubmed></ref>。


====格子模様====
====格子模様====
plaid pattern
plaid pattern
:傾きの異なる縞模様を重ねて動かすと、各縞に対する法線方向の動きが合成されて、格子模様が一方向に動いて見える。MTには格子模様の運動方向に選択性を示すものがある。さらに両眼視差により縞模様がすれ違うように見せたり、縞の重複部分の輝度を調整して半透明の縞模様が重なるように見せると、縞の法線方向に選択的に反応する<ref name=ref8 /><ref><pubmed>3447355</pubmed></ref><ref><pubmed>1641024</pubmed></ref>。
:傾きの異なる縞模様を重ねて動かすと、各縞に対する法線方向の動きが合成されて、格子模様が一方向に動いて見える。しかし、縞模様の奥行きを変えたり、縞の重複部分の輝度を調整して半透明の縞模様が重なるように見せると、縞模様がすれ違うようにしか見えない。V5/MTには格子模様の運動方向に選択的に反応するニューロンがある。その中には、縞模様がすれ違うように見せるとむしろ各縞模様の法線方向に選択的に反応するものがある<ref name=ref8 /><ref><pubmed>3447355</pubmed></ref><ref><pubmed>1641024</pubmed></ref>。


===注意や予測(期待)===
===注意や予測(期待)===
 
 我々の視覚情報処理は視覚情報以外の能動的な修飾作用を受けている([[空間的注意]]、[[選択的注意]]を参照)。サルを訓練して、特定の場所、刺激物体、色や形などの刺激属性に注意を向けさせた状態で記録すると反応の増強(ゲイン)、刺激選択性の向上(応答特性)、受容野の縮小や[[移動]](空間特性)が観察される<ref><pubmed>7605061</pubmed></ref><ref><pubmed>12217174</pubmed></ref>。顕著な作用がV5/MT<ref><pubmed>8700227</pubmed></ref><ref><pubmed>10376597</pubmed></ref><ref><pubmed>10460265</pubmed></ref><ref><pubmed>10200212</pubmed></ref>やV4<ref><pubmed>4023713</pubmed></ref><ref><pubmed>9096154</pubmed></ref><ref><pubmed>9870971</pubmed></ref><ref><pubmed>10896165</pubmed></ref>で見られる一方で、V1、V2ではそうした修飾作用は弱い<ref><pubmed>9120566</pubmed></ref><ref><pubmed>10024360</pubmed></ref>。注意を向けさせるとV4で電気活動の同期性が高まることが報告されている<ref><pubmed>11222864</pubmed></ref>。ヒトでも同様の作用が報告されている<ref><pubmed>9756472</pubmed></ref>。
 我々の視覚情報処理は視覚情報以外の能動的な修飾作用を受けている([[空間的注意]]、[[選択的注意]]を参照)。サルを訓練して、特定の場所、刺激物体、色や形などの刺激属性に注意を向けさせた状態で記録すると反応の増強(ゲイン)、刺激選択性の向上(応答特性)、受容野の縮小や[[移動]](空間特性)が観察される<ref><pubmed>7605061</pubmed></ref><ref><pubmed>12217174</pubmed></ref>。顕著な作用がMT<ref><pubmed>8700227</pubmed></ref><ref><pubmed>10376597</pubmed></ref><ref><pubmed>10460265</pubmed></ref><ref><pubmed>10200212</pubmed></ref>やV4<ref><pubmed>4023713</pubmed></ref><ref><pubmed>9096154</pubmed></ref><ref><pubmed>9870971</pubmed></ref><ref><pubmed>10896165</pubmed></ref>で見られる一方で、V1、V2ではそうした修飾作用は弱い<ref><pubmed>9120566</pubmed></ref><ref><pubmed>10024360</pubmed></ref>。V4では注意を向けさせると電気活動の同期性が高まることが報告されている<ref><pubmed>11222864</pubmed></ref>。ヒトでも同様の作用が報告されている<ref><pubmed>9756472</pubmed></ref>。


==知覚の神経メカニズム==
==知覚の神経メカニズム==


 ある領野の電気活動が特定の視知覚の神経メカニズム(neural correlates)であることを示すには、大局的な情報に選択性を示すことだけでは不十分であり、そうした試みはあまり成功していない。MTの性質は、そうした因果関係をMTで検証することを例外的に可能にしている。
 ある領野の電気活動が特定の視知覚の神経メカニズム(neural correlates)であることを示すには、大局的な情報に選択性を示すことだけでは不十分である。サルなどの動物を[[強制選択課題]]で訓練すると、各試行における動物個体の知覚判断(刺激の見え)を評価できる。課題遂行中にある領野ないしニューロンの電気活動を記録することにより、動物の知覚判断との因果関係を明らかする必要がある。しかし、そうした試みはあまり成功していない。V5/MTでは①大多数のニューロンが運動方向や両眼視差に選択性を示す、②同様の選択性を持つニューロンが機能的コラムに集中している、③結果的に運動視や立体視が比較的小数の一群のニューロンの活動に依存していることから、そうした因果関係を検証することが例外的に可能となった。
#大多数のニューロンが運動方向や両眼視差に選択性を示す。
#同様の選択性を持つニューロンが機能的コラムに集中している。
#結果的に運動視や立体視が一群のニューロンの活動に依存している。


===運動からの構造の知覚===
===運動からの構造の知覚===
structure from motion
structure from motion
 
:円筒の表面に貼り付けたドットパターンが回転するように平面上のドットを左右に動かすと、回転する円筒に見える。両眼視差の情報がないので左右どちらの動きがドラムの全面にあたるのかは曖昧であり、見かけの回転方向は不定期に変化する。V5/MTには奥行きとドットの運動方向に選択的に反応するニューロンがあり、課題遂行中に記録すると回転の見えの変化に同期して反応が変化するニューロンが見つかった<ref><pubmed>9565031</pubmed></ref>。
 円筒の表面に貼り付けたドットパターンが回転するように、平面上のドットを左右に動かすと回転する円筒に見える。サルを強制選択課題で訓練すると、サルにとっての回転方向の見えを評価できる。両眼視差の情報がないので見かけの回転方向が不定期に変化するが、それと同期して反応が変化するニューロンがMTで見つかった<ref><pubmed>9565031</pubmed></ref>。


===ドットパターンの運動方向・奥行きの知覚===
===ドットパターンの運動方向・奥行きの知覚===
 ドットパターンの各要素がランダムに動く中で、同じ運動方向や奥行きを持つ要素の割合([[wikipedia:ja:コーヒーレンス|コーヒーレンス]])が高い程、その検出が容易となる。サルを[[強制選択課題]]で訓練すると、刺激のコーヒーレンスと正答率には一定の相関関係があり、サルにとっての運動の見えを評価できる。
 ドットパターンの各要素がランダムに動く中で、同じ運動方向や奥行きを持つ要素の割合([[wikipedia:ja:コーヒーレンス|コーヒーレンス]])が高い程、その検出が容易となる。運動方向を2方向から選択させると、刺激のコーヒーレンスと正答率には一定の相関関係があり、運動の見えを評価できる。課題遂行中にV5/MTから記録すると、①ニューロンの発火頻度と運動方向の見えが相関すること、②V5/MTの一群のニューロンを破壊、麻痺、局所電気刺激してサルの正答率を操作できること、③まったくランダムな刺激に対する知覚判断の変動と、記録しているニューロンの発火頻度の変動と相関する(choice-probability)ことから、比較的少数のMTニューロンの活動が運動方向の知覚判断を左右することが示された<ref><pubmed>1464765</pubmed></ref><ref><pubmed>1607944</pubmed></ref><ref><pubmed>3385495</pubmed></ref>。同様に、V5/MTへの局所電気刺激による動物の知覚判断への影響を調べた実験より、奥行き知覚とV5/MTニューロンの活動との因果関係が示された<ref><pubmed>9716130</pubmed></ref>。
#ニューロンの発火頻度と運動の見えが相関すること、
#一群のニューロンを破壊、麻痺、局所刺激して正答率を操作できること、
#まったくランダムな刺激に対する動物個体の知覚判断の試行間変動が発火頻度の変動と相関する(choice-probability)こと
 
から、比較的少数のMTニューロンの活動が運動方向の知覚を左右することが示された<ref><pubmed>1464765</pubmed></ref><ref><pubmed>1607944</pubmed></ref><ref><pubmed>3385495</pubmed></ref>。さらに、MTの局所電気刺激による動物の知覚判断への影響を調べた実験から、奥行き知覚とMTニューロンの活動との因果関係が示された<ref><pubmed>9716130</pubmed></ref>。
 
 
==視覚情報処理のメカニズム==
==視覚情報処理のメカニズム==
 
 
 各機能的領野における視覚情報処理を解明するには、ニューロン群の結合関係や反応特性の研究に加えて、数理モデルによる定量的な解析が必要である。すでにV1では様々な数理モデルが提案されている([[視差エネルギーモデル]]を参照)。最近、視覚前野でもこうした解析が盛んになってきた。例えば、視覚刺激の物理特性とニューロンの反応特性の関係の代わりに、直近の領野間の反応特性の関係に着目した、[[線形加算]]型の数理モデルが幾つか提案されている。V1の出力を線形加算するモデルがV2<ref><pubmed>21841776</pubmed></ref><ref name=refb /><ref name=refc />やV5<ref><pubmed>8570605</pubmed></ref><ref><pubmed>17041595</pubmed></ref>のニューロンの反応選択性を説明できることが示されている。これらのモデルでは刺激要素の連続した組み合わせ(輪郭線)に対する反応が、個々の刺激要素(線分)の空間的な配置や組み合わせ方により説明されている。一方、面状に広がる刺激(ドットパターン、テクスチャや自然画像)に対する反応は、刺激に含まれる刺激要素の量により説明されている。より高次の領野でも、輪郭線の形状が刺激要素の組み合わせの線形加算により説明されるモデルがV4や<ref name=ref2><pubmed>11698538</pubmed></ref><ref><pubmed>12426571</pubmed></ref><ref><pubmed>17596412</pubmed></ref>、IT野<ref><pubmed>15235606</pubmed></ref><ref><pubmed>18836443</pubmed></ref>で提案されている。しかし、自然画像のような面状に広がる刺激に対してはモデルの説明が十分でないとされている<ref><pubmed>16987926</pubmed></ref><ref><pubmed>19778517</pubmed></ref>。データの蓄積にともない、今後も数理モデルによる視覚情報処理メカニズムの解析が進展することが期待される。
各機能的領野における視覚情報処理を解明するには、ニューロン群の結合関係や反応特性の研究に加えて、数理モデルによる定量的な解析が必要である。すでにV1では様々な数理モデルが提案されている([[視差エネルギーモデル]]を参照)。最近、視覚前野でもこうした計算論的神経科学(computational neuroscience)の研究が盛んである。例えば、視覚刺激の物理特性とニューロンの反応特性の関係の代わりに、直近の領野間の反応特性の関係に着目した、[[線形加算]]型の数理モデルが幾つか提案されている。V1の出力を線形加算するモデルがV2<ref><pubmed>21841776</pubmed></ref><ref name=refb /><ref name=refc />やV5/MT<ref><pubmed>8570605</pubmed></ref><ref><pubmed>17041595</pubmed></ref>のニューロンの反応選択性を説明できることが示されている。これらのモデルでは刺激要素の連続した組み合わせ(輪郭線)に対する反応が、個々の刺激要素(線分)の空間的な配置や組み合わせ方により説明されている。より高次の領野でも、輪郭線の形状が刺激要素の組み合わせの線形加算により説明されるモデルがV4や<ref name=ref2><pubmed>11698538</pubmed></ref><ref><pubmed>12426571</pubmed></ref><ref><pubmed>17596412</pubmed></ref>、IT野<ref><pubmed>15235606</pubmed></ref><ref><pubmed>18836443</pubmed></ref>で提案されている。一方、面状に広がる刺激(ドットパターン、テクスチャや自然画像)に対する反応は、刺激に含まれる刺激要素の量の多寡や分布により説明されそうであるが、まだ説明が十分でない<ref><pubmed>16987926</pubmed></ref><ref><pubmed>19778517</pubmed></ref。視覚入力によるボトムアップ的なニューロンの反応選択性の形成とは別に、大局的な情報や注意や予測の効果については、ベイズ推定の考え方が注目されるものの、モデルとして説明するのは今後の課題である。近年、注目すべき点は、深層学習等の計算アルゴリズムの進歩、およびビックデータと呼ばれるような大量のデータの蓄積である。視覚情報処理の機能を実現するネットワークより、リバースエンジニアリングの手法により生体の神経メカニズムを探る研究が注目されている。今後も数理モデルによる視覚情報処理メカニズムの解析が進展することが期待される。


==各領野の解剖学的特徴とその機能==
==各領野の解剖学的特徴とその機能==
101行目: 90行目:
===V2野===
===V2野===


 18野の一部。V1の主な出力先で、V1から主な入力を受け、V1 へ強いフィードバック投射する。V3、V4、V5へ出力する。[[wikipedia:ja:チトクローム酸化酵素|チトクローム酸化酵素]](CO)の染色によりCOトライプと呼ばれる領域に区分される<ref><pubmed>7751939</pubmed></ref><ref><pubmed>12385630</pubmed></ref><ref><pubmed>12385631</pubmed></ref>。
 18野の一部。V1に隣接する帯状の領域。後側が垂直子午線を、前側が水平子午線を表し、背側部が上視野を、腹側部が下視野を表す。V1の主な出力先で、V1から主な入力を受け、V1 へ強いフィードバック投射する。V3、V4、V5へ出力する。[[wikipedia:ja:チトクローム酸化酵素|チトクローム酸化酵素]](CO)の染色によりCOトライプと呼ばれる領域に区分される<ref><pubmed>7751939</pubmed></ref><ref><pubmed>12385630</pubmed></ref><ref><pubmed>12385631</pubmed></ref>。[[太い縞]](thick stripe)はV1(4b層)より大細胞系の入力を受け、V3、MTに投射する。運動方向、速度、両眼視差に選択性を示し、背側視覚路に属する。[[細い縞]](thin stripe)はV1(ブロブ)より入力を受けV4に投射する。色相に選択性を示し、腹側視覚路に属する。[[淡い縞]](inter stripe、pale stripe)はV1(2/3層のブロブ間)より小細胞系の入力を受け、V4に投射する。線の傾きやエンドストップ抑制により端点を表す。腹側視覚路に属する。これらの領域はV2内に縞状に交互に分布する。
 
 [[広線条領域]](thick stripe)はV1(4b層)より大細胞系の入力を受け、V3、MTに投射する。運動方向、速度、両眼視差に選択性を示し、背側視覚路に属する。
 
 [[狭線条領域]](thin stripe)はV1(ブロブ)より入力を受けV4に投射する。色相に選択性を示し、腹側視覚路に属する。
 
 [[線条間領域]](淡線条領域)(inter stripe、pale stripe)はV1(2/3層のブロブ間)より小細胞系の入力を受け、V4に投射する。線の傾きやエンドストップ抑制により端点を表す。腹側視覚路に属する。これらの領域はV2内に縞状に交互に分布する。


 V1よりも低い[[wikipedia:ja:空間周波数|空間周波数]]成分によく反応し、両眼視差に選択性を示すニューロンが多い。大局的な選択性を示す(主観的輪郭線の傾き、輪郭線を挟んだ図と地の向き、負相関ステレオグラム)。奥行き段差による境界線の傾き<ref name=refb />、受容野を横切る輪郭線の折れ曲がり<ref><pubmed>10684908</pubmed></ref><ref><pubmed>15056711</pubmed></ref>、傾きや周波数成分の異なる縞模様の組み合わせ<ref><pubmed>20147538</pubmed></ref>に選択性を示す。
 V1よりも低い[[wikipedia:ja:空間周波数|空間周波数]]成分によく反応する。両眼視差に選択性を示す。大局的な選択性を示す(主観的輪郭線の傾き、輪郭線を挟んだ図と地の向き、逆相関ステレオグラム)。奥行き段差による境界線の傾き<ref name=refb />、受容野を横切る輪郭線の折れ曲がり<ref><pubmed>10684908</pubmed></ref><ref><pubmed>15056711</pubmed></ref>、傾きや周波数成分の異なる縞模様の組み合わせ<ref><pubmed>20147538</pubmed></ref>に選択性を示す。


===V3野===
===V3野===


 18野の一部。背側部([[V3d]])と腹側部([[V3v]])に2分される。合わせて一つのV3とする説<ref name=ref7><pubmed>4978525</pubmed></ref><ref><pubmed>11832231</pubmed></ref>と、異なる領野とする説<ref><pubmed>811327</pubmed></ref>がある。V3vはVP野(腹側後部領域、ventral posterior area)とも言う<ref><pubmed>9114244</pubmed></ref><ref><pubmed>3782504</pubmed></ref><ref><pubmed>3716214</pubmed></ref><ref name=ref1 />。V2(狭線条部、線条間部)から入力を受け、下側頭葉に投射する。視野の下半分を表す。色選択性を示し、腹側視覚路に属する。一方、V3dはV2(広線条部)とV1(4b層)から入力を受け、V3a、V4、V5、V6と後頭頂葉に出力する。視野の上半分を表す。ミエリン染色で濃く染まり、輝度や奥行きに選択性を示すが、色には選択性を示さない。背側皮質視覚路に属する。広域的な動きや奥行き方向の傾き、テクスチャの充填(欠損部の補完)<ref><pubmed>7477262</pubmed></ref>に関わる。
 18野の一部。V2に隣接する領域。主に[[wikipedia:ja:旧世界ザル|旧世界ザル]]を対象とした研究では背側部([[V3d]])と腹側部([[V3v]])を合わせて一つのV3であるとする<ref name=ref7><pubmed>4978525</pubmed></ref><ref><pubmed>11832231</pubmed></ref>。腹側部はV2(細い縞、淡い縞)から入力を受け、下側頭葉(V4,VTF,VOF)に投射する。上視野を表す。色選択性を示し、腹側視覚路に属する。背側部はV2(太い縞)とV1(4b層)から入力を受け、V3a、V4、V5、V6と後頭頂葉(DP,VIP,LIP)に出力する。下視野を表す。ミエリン染色で濃く染まり、輝度や奥行きに選択性を示すが、色には選択性を示さない。広域的な動きや奥行き方向の傾き、テクスチャの充填(欠損部の補完)<ref><pubmed>7477262</pubmed></ref>に関わる。背側皮質視覚路に属する。これに対して、主に[[wikipedia:ja:新世界ザル|新世界ザル]]を対象とした研究では背側部([[DM]])の下視野と上視野を表す一つの領域がV3に相当するとしている<ref><pubmed>811327</pubmed></ref>。一方、腹側部はVP野(腹側後部領域、ventral posterior area)と呼び、V3とは異なる領域であるとしている<ref><pubmed>9114244</pubmed></ref><ref><pubmed>3782504</pubmed></ref><ref><pubmed>3716214</pubmed></ref><ref name=ref1 />


 V2とV4の間の領域を3次視覚皮質複合体と言う。ヒトでよく発達しており、サルとの違いが顕著な領域である。V3AはV3d前方に隣接し、別の視野地図をもつ領野である。V1、V2、V3dより入力を受け、MT、MST、LIPへ出力する。サルでは、V3dに比べて速度や奥行きに選択性を示すニューロンが少なく、ドットパターンよりも線刺激に強く反応する。注意の効果が顕著に見られる<ref><pubmed>10938295</pubmed></ref>。視線の向きによらずに、頭部の向きを基準とする方向に選択性を示すものがある<ref><pubmed>8385201</pubmed></ref>。ヒトでは、むしろV3dよりもV3Aの方が運動刺激によく反応し、V3Aに[[経頭蓋電気刺激]](TMS)を与えると速度の知覚が障害される<ref><pubmed>18596160</pubmed></ref>。さらに別な領域(V3B)も存在する<ref><pubmed>9593930</pubmed></ref><ref><pubmed>11322977</pubmed></ref>
 V2とV4の間の領域を3次視覚皮質複合体と総称する。ヒトでよく発達しており、サルとの違いが顕著な領域である。V3AはV3d前方に隣接し、別の視野地図をもつ領野である。V1、V2、V3dより入力を受け、MT、MST、LIPへ出力する。サルでは、V3dに比べて速度や奥行きに選択性を示すニューロンが少なく、ドットパターンよりも線刺激に強く反応する。注意の効果が顕著に見られる<ref><pubmed>10938295</pubmed></ref>。視線の向きによらずに、頭部の向きを基準とする方向に選択性を示すものがある<ref><pubmed>8385201</pubmed></ref>。ヒトでは、むしろV3dよりもV3Aの方が運動刺激によく反応し、V3Aに[[経頭蓋電気刺激]](TMS)を与えると速度の知覚が障害される<ref><pubmed>18596160</pubmed></ref>。ヒトには別領域(V3B)も存在する<ref><pubmed>9593930</pubmed></ref><ref><pubmed>11322977</pubmed></ref>。V3A,V3Bとも主に周辺視野を表す。


===V4野===
===V4野===


 [[wikipedia:ja:新世界ザル|新世界ザル]][[wikipedia:ja:背外側野|背外側野]](DL)に相当する。V2(狭線条部、線条間部)、V3、V3aから強い入力を受け、[[下側頭葉]](TEO、TE)、[[上側頭溝]](MT、MST、FST、V4t)、頭頂葉(DP、VIP、LIP、PIP、MST)、[[前頭葉]](FEF)へ出力する。V1、V2、V3にフィードバック投射を返す。中心視の領域がV2の主な投射先であり、V1からも入力を受ける。周辺視の領域はV3、V5から強い入力を受け、上側頭溝や頭頂葉からも広く入力を受ける。背側視覚路に属する。ヒトのV4の区分には諸説がある<ref><pubmed>17978030</pubmed></ref><ref name=ref3><pubmed>12217168</pubmed></ref>。
 V3に隣接する領域。背側部([[V4d]])と腹側部([[V4v]])を合わせて一つのV4とする。背側部は上視野の中でも垂直子午線に近い部分を表し、残りの部分は腹側部で表されている。新世界ザルの[[wikipedia:ja:背外側野|背外側野]](DL)に相当する。V2(細い縞、淡い縞)、V3、V3Aから強い入力を受け、[[下側頭葉]](TEO、TE)、[[上側頭溝]](MT、MST、FST、V4t)、頭頂葉(DP、VIP、LIP、PIP、MST)、[[前頭葉]](FEF)へ出力する。V1、V2、V3にフィードバック投射を返す。中心視の領域がV2の主な投射先であり、V1からも入力を受ける。周辺視の領域はV3、V5から強い入力を受け、上側頭溝や頭頂葉からも広く入力を受ける。背側視覚路に属する。


 1970年代に色に選択的な領域として同定された際には、色恒常性を示すことから色表現の中枢とされた<ref name=ref7 /></ref><ref><pubmed>4196224</pubmed></ref>。1980年代になると輪郭線の形状に選択性を示すことが明らかにされた<ref><pubmed>418173</pubmed></ref><ref name=ref6 /><ref><pubmed>3803497</pubmed></ref>。近年、色と形のサブ領域(グロブ)に分かれることが示されている<ref><pubmed>21076422</pubmed></ref><ref><pubmed>17988638</pubmed></ref>。曲線の曲率と傾き<ref><pubmed>10561421</pubmed></ref><ref name=ref2 />、縞模様の空間周波数成分と傾き、輪郭線の形状に複雑な応答特性を示す。3次元方向の線の傾き<ref><pubmed>15987762</pubmed></ref>、受容野内外の相対的な奥行き(fine stereopsis)<ref><pubmed>3559704</pubmed></ref>に選択性を示す。大局的な選択性を示す(色恒常性、負相関ステレオグラム)。注意により強い修飾を受ける。
 1970年代に色に選択的な領域として同定された際には、色恒常性を示すことから色表現の中枢とされた<ref name=ref7 /></ref><ref><pubmed>4196224</pubmed></ref>。1980年代になると輪郭線の形状に選択性を示すことが明らかにされた<ref><pubmed>418173</pubmed></ref><ref name=ref6 /><ref><pubmed>3803497</pubmed></ref>。近年、色と形のサブ領域(グロブ)に分かれることが示されている<ref><pubmed>21076422</pubmed></ref><ref><pubmed>17988638</pubmed></ref>。曲線の曲率と傾き<ref><pubmed>10561421</pubmed></ref><ref name=ref2 />、縞模様の空間周波数成分と傾き、輪郭線の形状に複雑な応答特性を示す。3次元方向の線の傾き<ref><pubmed>15987762</pubmed></ref>、受容野内外の相対的な奥行き(relative disparity)<ref><pubmed>3559704</pubmed></ref>に選択性を示す。大局的な選択性を示す(色恒常性、負相関ステレオグラム)。注意により強い修飾を受ける。
 サルのV4を破壊すると、大きさの変化、遮蔽、色恒常性、主観的輪郭線に対応できなくなる、混在している複数の刺激を区別することができなくなる、同一物体の持つ奥行き,明暗,色,位置などの情報を同一物体のものとして関連付けることができなくなる<ref><pubmed>8466667</pubmed></ref><ref><pubmed>8338809</pubmed></ref><ref><pubmed>8782380</pubmed></ref><ref><pubmed>10412066</pubmed></ref>。


 サルのV4を破壊すると、大きさの変化、遮蔽、色恒常性、主観的輪郭線に対応できなくなる、混在している複数の刺激を区別することができなくなる、同一物体の持つ奥行き,明暗,色,位置などの情報を同一物体のものとして関連付けることができなくなる<ref><pubmed>8466667</pubmed></ref><ref><pubmed>8338809</pubmed></ref><ref><pubmed>8782380</pubmed></ref><ref><pubmed>10412066</pubmed></ref>。ヒトのV8が損傷を受けると色覚だけが失われる。この[[V8]]をV4の一部とする説と、サルの[[TEO]]に相当する領域とする説がある<ref><pubmed>312619</pubmed></ref><ref><pubmed>10195149</pubmed></ref><ref><pubmed>11278193</pubmed></ref><ref name =ref3 />。
 fMRIによる研究ではヒトの背側部に相当する領域が同定されず、ヒトのV4の区分には諸説がある<ref><pubmed>17978030</pubmed></ref><ref name=ref3><pubmed>12217168</pubmed></ref>。①背側部が存在しないという説。V3dに隣接する領域(LO1,LO2)はそれぞれ全視野を表しており、下視野を表す領域は不明である。②腹側のV8がV4の一部で下視野を表すという説。V4vとV8を合わせて全視野を表す一つの領域とする。③fMRIの分解能が不足で同定できなかったする説。しかし、背側部は存在するが、腹側部にくらべて小さい領域であり、主に上視野の中心視部分を表す。残りの部分は背側部に含まれる。ヒトのV8が損傷を受けると色覚だけが失われる。この[[V8]]をV4の一部とする説と、サルの[[TEO]]に相当する領域とする説がある<ref><pubmed>312619</pubmed></ref><ref><pubmed>10195149</pubmed></ref><ref><pubmed>11278193</pubmed></ref><ref name =ref3 />。


===MT/V5野===
===V5/MT野===


 運動方向に選択性をもつ領域(V5)とミエリン染色で濃く染まる領域(MT野、middle temporal area)として別々に同定されたが、後に同じ領域であることが明かにされた<ref><pubmed>4998922</pubmed></ref><ref name=ref5><pubmed>5002708</pubmed></ref>。チトクローム酸化酵素<ref><pubmed>7719129</pubmed></ref>や[[Cat301]]抗体<ref><pubmed>1702988</pubmed></ref>で濃く染まる。ヒトでは、隣接する領域(MST等)と合わせて、[[MT complex]]、[[hMT]]、[[MT+]]、V5と呼ぶことが多い<ref><pubmed>7722658</pubmed></ref><ref><pubmed>8490322</pubmed></ref>。背側視覚路に属し、主にV1(4b層)より、他にV2(広線条部)、V1(6層)、V3背側部、V4、V6から入力を受ける<ref name=ref4 /><ref><pubmed>3722458</pubmed></ref>。周辺視の領域は[[皮質正中部]]と[[脳梁膨大後部]]からも入力を受ける<ref><pubmed>17042793</pubmed></ref>。主に隣接するMST、[[FST]]、V4tへ、他に[[前頭眼野]]([[FEF]])、[[外側頭頂間野]](LIP、VIP)、[[上丘]](SC)へ出力を投射する。また、V1を介さない外側膝状体、[[視床枕]]からの直接入力がある<ref><pubmed>15378066</pubmed></ref>([[盲視]]を参照)。
 刺激の運動方向に選択性をもつ領域(V5)とミエリン染色で濃く染まる領域(MT、middle temporal area)として別々に同定されたが、後に同じ領域であることが明かにされた<ref><pubmed>4998922</pubmed></ref><ref name=ref5><pubmed>5002708</pubmed></ref>。チトクローム酸化酵素<ref><pubmed>7719129</pubmed></ref>や[[Cat301]]抗体<ref><pubmed>1702988</pubmed></ref>で濃く染まる。ヒトでは、隣接する領域(MST等)と合わせて、[[MT complex]]、[[hMT]]、[[MT+]]、V5と呼ぶことが多い<ref><pubmed>7722658</pubmed></ref><ref><pubmed>8490322</pubmed></ref>。背側視覚路に属し、主にV1(4b層)より、他にV2(太い縞)、V1(6層)、V3背側部、V4、V6から入力を受ける<ref name=ref4 /><ref><pubmed>3722458</pubmed></ref>。周辺視の領域は[[皮質正中部]]と[[脳梁膨大後部]]からも入力を受ける<ref><pubmed>17042793</pubmed></ref>。主に隣接するMST、[[FST]]、V4tへ、他に[[前頭眼野]]([[FEF]])、[[外側頭頂間野]](LIP、VIP)、[[上丘]](SC)へ出力を投射する。また、V1を介さない外側膝状体、[[視床枕]]からの直接入力がある<ref><pubmed>15378066</pubmed></ref>([[盲視]]を参照)。


 大部分(70-85%)のニューロンが刺激の運動方向、速度、両眼視差に選択性を示し<ref name=ref5/><ref><pubmed>6864242</pubmed></ref><ref><pubmed>6481441</pubmed></ref>、運動方向と両眼視差の機能的コラム(V1を参照)が存在する<ref><pubmed>6693933</pubmed></ref><ref name=ref8><pubmed>6520628</pubmed></ref><ref><pubmed>9952417</pubmed></ref>。注視面からの絶対視差(coarse stereopsis)に選択性を示し、[[反射性輻輳眼球運動]]の生成に関与するとされる。奥行きの異なる面を区別し、[[運動視差]](奥行きの違いにより生じる運動速度や運動方向の変化)に選択性を示す。運動方向の違いによる境界線に選択性を示す。注意により強い修飾を受ける。サルのMTは運動視や立体視に直接関わる([[知覚]]の神経メカニズムの項を参照)。
 大部分(70-85%)のニューロンが刺激の運動方向、速度、両眼視差に選択性を示し<ref name=ref5/><ref><pubmed>6864242</pubmed></ref><ref><pubmed>6481441</pubmed></ref>、運動方向と両眼視差の機能的コラム(V1を参照)が存在する<ref><pubmed>6693933</pubmed></ref><ref name=ref8><pubmed>6520628</pubmed></ref><ref><pubmed>9952417</pubmed></ref>。注視面からの絶対視差(absolute disparity)に選択性を示し、奥行きの異なる面を区別し、[[運動視差]](奥行きの違いにより生じる運動速度や運動方向の変化)に選択性を示す。運動方向の違いによる境界線に選択性を示す。注意により強い修飾を受ける。サルのMTは運動視や立体視に直接関わる([[知覚]]の神経メカニズムの項を参照)。


 ヒトのV5が損傷されると、運動刺激が引き起こす眼球運動が障害され、運動を知覚できずに世界が静的な"フレーム"の連続に感じられる<ref><pubmed>6850272</pubmed></ref><ref><pubmed>2723744</pubmed></ref><ref><pubmed>1992012</pubmed></ref>。MTに経頭蓋磁気刺激を与えると運動知覚が阻害される<ref><pubmed>9569672</pubmed></ref>。一方、3次元的な位置の知覚の阻害は後頭頂葉の損傷による。
 ヒトのV5が損傷されると、刺激の運動に追従して生じる眼球運動が障害され、運動を知覚できずに世界が静的な"フレーム"の連続に感じられる<ref><pubmed>6850272</pubmed></ref><ref><pubmed>2723744</pubmed></ref><ref><pubmed>1992012</pubmed></ref>。MTに経頭蓋磁気刺激を与えると刺激の運動の知覚が阻害される<ref><pubmed>9569672</pubmed></ref>。一方、3次元的な位置の知覚の阻害は後頭頂葉の損傷により生起する。


===V6野===
===V6野===


 新世界ザルの背内側野(DM)に相当する。当初、ヒトや[[wikipedia:ja:旧世界ザル|旧世界ザル]](マカカ属サル)には存在しないとされていた。19野の一部で、解剖学的には[[上頭頂小葉]](PO)の一部を占める<ref><pubmed>8713448</pubmed></ref><ref><pubmed>10583481</pubmed></ref><ref><pubmed>9786211</pubmed></ref>。主にMTより入力を受け、隣接するV6Aに出力する。頭頂葉(MST、MIP、VIP、LIP)へも投射する。周辺視によく反応する。[[エンドストップ]]抑制が弱く、低空間周波数成分に反応する。ドットパターンよりも大きな物体の輪郭線の運動に反応するが、最適な運動方向とその逆方向を区別しない。物体の動きよりも自己運動の検出に関わるとされる。ミエリン染色で濃く染まる<ref><pubmed>15678474</pubmed></ref>。
 新世界ザルの背内側野(DM)の一部が相当する。当初、ヒトや[[wikipedia:ja:旧世界ザル|旧世界ザル]](マカカ属サル)ではV3の一部であり、存在しないとされていた。19野の一部で、解剖学的には[[上頭頂小葉]](PO)の一部を占める<ref><pubmed>8713448</pubmed></ref><ref><pubmed>10583481</pubmed></ref><ref><pubmed>9786211</pubmed></ref>。主にMTより入力を受け、隣接するV6Aに出力する。頭頂葉(MST、MIP、VIP、LIP)へも投射する。周辺視によく反応する。[[エンドストップ]]抑制が弱く、低空間周波数成分に反応する。ドットパターンよりも大きな物体の輪郭線の運動に反応するが、最適な運動方向とその逆方向を区別しない。物体の動きよりも自己運動の検出に関わるとされる。ミエリン染色で濃く染まる<ref><pubmed>15678474</pubmed></ref>。


==関連項目==
==関連項目==
77

回編集