「視覚前野」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
15行目: 15行目:
==視覚前野とは==
==視覚前野とは==


 [[wikipedia:ja:哺乳類|哺乳類]]の[[wikipedia:ja:大脳新皮質|大脳新皮質]]の一部で、後頭葉の視覚連合野(後頭連合野)、あるいは後頭葉から一次視覚野(V1)を除いた部分。細胞構築学的には[[ブロードマンの脳地図]]の18野、19野に相当する。18野を前有線皮質(傍有線野、prestriate cortex)、19野を周有線皮質(周線条野、後頭眼野、parastriate cortex)、視覚前野全体を外線条皮質(有線外皮質、extrastriate cortex、circumstriate cortex)と呼ぶ。当初、一次視覚野(V1)に隣接する領域を広く視覚前野ないし視覚連合野と称した。1960年代以降、単一細胞記録やトレーサーの注入により、ニューロンの応答特性、受容野の大きさや位置、解剖学的投射などを手がかりとした領野区分の研究がネコやサルで盛んになった。また[[wikipedia:ja:免疫組織化学|免疫組織化学]]による研究が進み、タンパクや遺伝子の発現に着目した研究も進んだ。1980年代以降、fMRIや光計測等のイメージング技術の発達により視野地図の広がりを可視化する研究が進み、ヒトを対象とする研究も進んだ。機能的な領野区分は[[wikipedia:ja:旧世界ザル|旧世界ザル]]のマカカ属サル([[wikipedia:ja:アカゲザル|アカゲザル]]、[[wikipedia:ja:ニホンザル|ニホンザル]]など)で最も進んでおり、現在ではV2、V3、V4、V5/MT、V6等の機能的な領野が同定され、それぞれが個別の領野として扱われることが多い。細部や高次領域(V3、V4、V6)については、ヒトを含む[[動物種]]により区分法や名称が異なり、研究者間でも見解の相違がある。この解説では旧世界ザルの知見を中心に概説する。
 [[wikipedia:ja:哺乳類|哺乳類]]の[[wikipedia:ja:大脳新皮質|大脳新皮質]]の一部で、後頭葉の視覚連合野(後頭連合野)、あるいは後頭葉から一次視覚野(V1)を除いた部分。細胞構築学的には[[ブロードマンの脳地図]]の18野、19野に相当する。18野を前有線皮質(傍有線野、prestriate cortex)、19野を周有線皮質(周線条野、後頭眼野、parastriate cortex)、視覚前野全体を外線条皮質(有線外皮質、extrastriate cortex、circumstriate cortex)と呼ぶ。当初、一次視覚野(V1)に隣接する領域を広く視覚前野ないし視覚連合野と称した。1960年代以降、単一細胞記録やトレーサーの注入により、ニューロンの応答特性、受容野の大きさや位置、解剖学的投射などを手がかりとした領野区分の研究がネコやサルで盛んになった。また[[wikipedia:ja:免疫組織化学|免疫組織化学]]による研究が進み、タンパクや遺伝子の発現に着目した研究も進んだ。1980年代以降、fMRIや光計測等のイメージング技術の発達により視野地図の広がりを可視化する研究が進み、ヒトを対象とする研究も進んだ。機能的な領野区分は[[wikipedia:ja:旧世界ザル|旧世界ザル]]のマカカ属サル([[wikipedia:ja:アカゲザル|アカゲザル]]、[[wikipedia:ja:ニホンザル|ニホンザル]]など)で最も進んでおり、現在ではV2、V3、V4、V5/MT、V6等の機能的な領野が同定され、それぞれが個別の領野として扱われることが多い。細部や高次領域(V3、V4、V6)については、ヒトを含む動物種により区分法や名称が異なり、研究者間でも見解の相違がある。この解説では旧世界ザルの知見を中心に概説する。


==機能的な領野の区分==
==機能的な領野の区分==
27行目: 27行目:
==階層的なネットワークと視覚情報の中間処理==
==階層的なネットワークと視覚情報の中間処理==


 視覚前野の機能的な領野は階層的な結合関係を持ち、V1と高次視覚野(側頭葉、後頭頂葉)の間で、視覚情報の中間処理を行う。領野間のフィードフォワード投射に着目すると視覚情報の流れを階層的なネットワークの枠組みで捉えることができる。V1のニューロンは小さな受容野を持ち、刺激要素(スポットや線分)や、ドットやテクスチャ(肌理、模様)が表す面に選択的に反応し、局所的な刺激特徴(色(輝度)、線の傾き、両眼視差、運動)を抽出する。視覚経路の階層を上がるほど受容野のサイズが大きくなり、刺激位置の情報やレチノトピーの性質が徐々に失われる。V2やV4ではCOストライプやグロブ(後述。V2、V4の項を参照)ごとに局所的な視野地図の繰り返しが生じている。階層を上がるにつれて広範囲の情報が選択的に統合されて、受容野内に広がる刺激全体が示す刺激特徴の組み合わせや空間配置が表す複雑な刺激特性を抽出する。一方、刺激位置の情報やレチノトピーの性質は徐々に失われる。視覚情報の流れは主に背側視覚路と腹側視覚路とに分かれる<ref>'''L G Ungerleider, M Mishkin'''<br>Two cortical visual systems.<br>''Analysis of Visual Behavior'' (D J Ingle, M A Goodale, R J W Masfield, eds.), MIT Press, Cambridge, MA, 1982.</ref><ref><pubmed>2471327</pubmed></ref><ref><pubmed>1965642</pubmed></ref><ref><pubmed>1702462</pubmed></ref><ref><pubmed>1734518</pubmed></ref><ref><pubmed>8038571</pubmed></ref>(詳細は[[視覚路]]、受容野を参照)。同一視野の情報が複数の領野で並列分散処理されており、外側膝状体やV1と異なり、視覚前野のある領野が局所的に損傷されても視野に欠損(暗点)は生じない。
 視覚前野の機能的な領野は階層的な結合関係を持ち、V1と高次視覚野(側頭葉、後頭頂葉)の間で、視覚情報の中間処理を行う。領野間のフィードフォワード投射に着目すると視覚情報の流れを階層的なネットワークの枠組みで捉えることができる。V1のニューロンは小さな受容野を持ち、刺激要素(スポットや線分)や、ドットやテクスチャ(肌理、模様)が表す面に選択的に反応し、局所的な刺激特徴(色(輝度)、線の傾き、両眼視差、運動)を抽出する。視覚経路の階層を上がるほど受容野のサイズが大きくなり、刺激位置の情報やレチノトピーの性質が徐々に失われる。V2やV4ではCOストライプやグロブ(後述。V2、V4の項を参照)ごとに局所的な視野地図の繰り返しが生じている。階層を上がるにつれて広範囲の情報が選択的に統合されて、受容野内に広がる刺激全体が示す刺激特徴の組み合わせや空間配置が表す複雑な刺激特性を抽出する。一方、刺激位置の情報やレチノトピーの性質は徐々に失われる。視覚情報の流れは主に背側視覚路と腹側視覚路とに分かれる<ref>'''L G Ungerleider, M Mishkin'''<br>Two cortical visual systems.<br>''Analysis of Visual Behavior'' (D J Ingle, M A Goodale, R J W Masfield, eds.), MIT Press, Cambridge, MA, 1982.</ref><ref><pubmed>2471327</pubmed></ref><ref><pubmed>1965642</pubmed></ref><ref><pubmed>1702462</pubmed></ref><ref><pubmed>1734518</pubmed></ref><ref><pubmed>8038571</pubmed></ref>(詳細は[[視覚路]]、[[受容野]]を参照)。同一視野の情報が複数の領野で並列分散処理されており、外側膝状体やV1と異なり、視覚前野のある領野が局所的に損傷されても視野に欠損(暗点)は生じない。


===背側視覚路===
===背側視覚路===