「視覚前野」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
31行目: 31行目:
===背側視覚路===
===背側視覚路===


 外側膝状体の大細胞系(M経路)由来の入力を受け、その性質(色選択性が無い、輝度コントラスト感度が高い、時間分解能が高い、空間分解能が低い)を引き継ぐ<ref name=ref1><pubmed>3746412</pubmed></ref><ref><pubmed>7931532</pubmed></ref>。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。V2(太い縞)、V3、V5/MT、V6を介して後頭頂葉に出力し、運動や空間構造の認識に関与するとされる。領野間は[[有髄線維]]により結合され、伝導速度が速く、ミエリン染色で濃く染まる。V1より各領野へ直接投射があり、視覚刺激の呈示開始よりニューロンの反応が生じるまでの時間(潜時)を比較しても領野間の差がほとんどない<ref name=refa><pubmed>9636126</pubmed></ref>。V5/MTのニューロンは等距離平面上のドットパターンの運動方向や注視点を基準とする平面の奥行き(絶対視差)に選択性を示す。V3、V6のニューロンは面の奥行(両眼視差)の変化や3次元方向の運動に選択性を示す。視覚前野が投射する後頭頂葉のうち、MST、VIP、7aは[[wikipedia:ja:オプティカルフロー|オプティカルフロー]](ドットパターンの発散、収縮、回転)などの3次元空間での動きの知覚に関与するとされる([[運動視]]を参照)。一方、視覚前野が投射する後頭頂葉のうち、V6A、LIPは空間の立体構造や3次元空間での位置関係を表し、身体座標による視線の移動や物体の把持操作に利用される。その際には、必ずしも刺激が意識されているわけではない<ref><pubmed>1374953</pubmed></ref>。
 外側膝状体の大細胞系(M経路)由来の入力を受け、その性質(色選択性が無い、輝度コントラスト感度が高い、時間分解能が高い、空間分解能が低い)を引き継ぐ<ref name=ref1><pubmed>3746412</pubmed></ref><ref><pubmed>7931532</pubmed></ref>。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。V2(太い縞)、V3、V5/MT、V6を介して後頭頂葉に出力し、運動や空間構造の認識に関与するとされる。領野間は[[有髄線維]]により結合され、伝導速度が速く、ミエリン染色で濃く染まる。V1より各領野へ直接投射があり、視覚刺激の呈示開始よりニューロンの反応が生じるまでの時間(潜時)を比較しても領野間の差がほとんどない<ref name=refa><pubmed>9636126</pubmed></ref>。V5/MTのニューロンは等距離平面上のドットパターンの運動方向や注視点を基準とする平面の奥行き(絶対視差)に選択性を示す。V3、V6のニューロンは奥行方向の傾きや3次元方向の運動に選択性を示す。視覚前野が投射する後頭頂葉のうち、MST、VIP、7aは[[wikipedia:ja:オプティカルフロー|オプティカルフロー]](ドットパターンの発散、収縮、回転)などの3次元空間での動きの知覚に関与するとされる([[運動視]]を参照)。一方、視覚前野が投射する後頭頂葉のうち、V6A、LIPは空間の立体構造や3次元空間での位置関係を表し、身体座標による視線の移動や物体の把持操作に利用される。その際には、必ずしも刺激が意識されているわけではない<ref><pubmed>1374953</pubmed></ref>。


===腹側視覚路===
===腹側視覚路===
121行目: 121行目:
 19野の一部。視覚刺激の運動方向に選択性をもつニューロンが多数ある領域(V5)とミエリン染色で濃く染まる領域(MT、middle temporal area)として別々に同定されたが、後に同じ領域であることが明かにされた<ref><pubmed>4998922</pubmed></ref><ref name=ref5><pubmed>5002708</pubmed></ref>。チトクローム酸化酵素<ref><pubmed>7719129</pubmed></ref>やCat301抗体<ref><pubmed>1702988</pubmed></ref>で濃く染まる。ヒトでは、隣接する領域(MST等)と合わせて、MT complex、hMT、MT+、V5/MTと呼ばれることが多い<ref><pubmed>7722658</pubmed></ref><ref><pubmed>8490322</pubmed></ref>。上視野と下視野をあわせた視野地図を持つ。背側視覚路に属し、主にV1(4b層)より、他にV2(太い縞)、V1(6層)、V3背側部、V4、V6から入力を受ける<ref name=ref4 /><ref><pubmed>3722458</pubmed></ref>。周辺視の領域は脳梁膨大後部皮質からも入力を受ける<ref><pubmed>17042793</pubmed></ref>。主に隣接するMST、FST、V4tへ、他に前頭眼野(FEF)、頭頂間溝(LIP、VIP)、上丘(SC)へ出力する。また、外側膝状体、視床枕から直接入力を受ける<ref><pubmed>15378066</pubmed></ref>([[盲視]]を参照)。
 19野の一部。視覚刺激の運動方向に選択性をもつニューロンが多数ある領域(V5)とミエリン染色で濃く染まる領域(MT、middle temporal area)として別々に同定されたが、後に同じ領域であることが明かにされた<ref><pubmed>4998922</pubmed></ref><ref name=ref5><pubmed>5002708</pubmed></ref>。チトクローム酸化酵素<ref><pubmed>7719129</pubmed></ref>やCat301抗体<ref><pubmed>1702988</pubmed></ref>で濃く染まる。ヒトでは、隣接する領域(MST等)と合わせて、MT complex、hMT、MT+、V5/MTと呼ばれることが多い<ref><pubmed>7722658</pubmed></ref><ref><pubmed>8490322</pubmed></ref>。上視野と下視野をあわせた視野地図を持つ。背側視覚路に属し、主にV1(4b層)より、他にV2(太い縞)、V1(6層)、V3背側部、V4、V6から入力を受ける<ref name=ref4 /><ref><pubmed>3722458</pubmed></ref>。周辺視の領域は脳梁膨大後部皮質からも入力を受ける<ref><pubmed>17042793</pubmed></ref>。主に隣接するMST、FST、V4tへ、他に前頭眼野(FEF)、頭頂間溝(LIP、VIP)、上丘(SC)へ出力する。また、外側膝状体、視床枕から直接入力を受ける<ref><pubmed>15378066</pubmed></ref>([[盲視]]を参照)。


 大部分(70-85%)のニューロンが視覚刺激の運動方向、速度、両眼視差に選択性を示し<ref name=ref8/><ref name=ref5/><ref><pubmed>6864242</pubmed></ref><ref><pubmed>6481441</pubmed></ref>、運動方向と両眼視差の機能的コラム(V1を参照)が存在する<ref><pubmed>6693933</pubmed></ref><ref><pubmed>9952417</pubmed></ref>。V5/MTのニューロンには、注視面からの絶対視差(absolute disparity)に選択性を示して奥行きの異なる面を区別するもの、運動視差(自己運動に伴う奥行きの変化により生じる見かけの運動速度や運動方向の違い)に選択性を示すもの、運動方向の違いだけで示される境界線に選択性を示すもの、3次元方向への運動に選択性を示すものがある<ref><pubmed>25411482</pubmed></ref><ref><pubmed>25411481</pubmed></ref>。両眼視差による奥行き表現と運動視差による奥行き表現は、サルではV5/MTで、ヒトではV3Bで統合される<ref name=ref52 />。注意により強い修飾を受ける。
 大部分(70-85%)のニューロンが視覚刺激の運動方向、速度、両眼視差に選択性を示し<ref name=ref8/><ref name=ref5/><ref><pubmed>6864242</pubmed></ref><ref><pubmed>6481441</pubmed></ref>、運動方向と両眼視差の機能的コラム(V1を参照)が存在する<ref><pubmed>6693933</pubmed></ref><ref><pubmed>9952417</pubmed></ref>。V5/MTのニューロンには、注視面からの絶対視差(absolute disparity)に選択性を示して奥行きの異なる面を区別するもの、運動視差(自己運動に伴う、奥行きの違いにより生じる見かけの運動速度や運動方向の変化)に選択性を示すもの、運動方向の違いだけで示される境界線に選択性を示すもの、3次元方向への運動に選択性を示すものがある<ref><pubmed>25411482</pubmed></ref><ref><pubmed>25411481</pubmed></ref>。両眼視差による奥行き表現と運動視差による奥行き表現は、サルではV5/MTで、ヒトではV3Bで統合される<ref name=ref52 />。注意により強い修飾を受ける。


 サルのV5/MTが運動知覚の中枢として機能することが示されている(知覚の神経メカニズムの項を参照)。ヒトのV5/MTが損傷されると、刺激刺激の運動に追従して生じる眼球運動が障害され、運動を知覚できずに世界が静的な"フレーム"の連続に感じられる<ref><pubmed>6850272</pubmed></ref><ref><pubmed>2723744</pubmed></ref><ref><pubmed>1992012</pubmed></ref>(詳細は視覚失認、運動盲を参照)。V5/MTに経頭蓋磁気刺激を与えると視覚刺激の運動の知覚が阻害される<ref><pubmed>9569672</pubmed></ref>。
 サルのV5/MTが運動知覚の中枢として機能することが示されている(知覚の神経メカニズムの項を参照)。ヒトのV5/MTが損傷されると、刺激刺激の運動に追従して生じる眼球運動が障害され、運動を知覚できずに世界が静的な"フレーム"の連続に感じられる<ref><pubmed>6850272</pubmed></ref><ref><pubmed>2723744</pubmed></ref><ref><pubmed>1992012</pubmed></ref>(詳細は視覚失認、運動盲を参照)。V5/MTに経頭蓋磁気刺激を与えると視覚刺激の運動の知覚が阻害される<ref><pubmed>9569672</pubmed></ref>。
77

回編集