「超解像蛍光顕微鏡」の版間の差分

編集の要約なし
91行目: 91行目:
====<small>dSTORM,GSDIM</small>====
====<small>dSTORM,GSDIM</small>====
蛍光一分子局在化顕微鏡法では利用可能な蛍光色素が限られているのに加え、STORMでは超解像画像を得るために2つの蛍光色素を必要とするため、マルチカラー化は容易ではなかった。その後に報告されたdSTORM (direct STORM)<ref><pubmed> 18646237 </pubmed></ref>やGSDIM(Ground-state depletion  
蛍光一分子局在化顕微鏡法では利用可能な蛍光色素が限られているのに加え、STORMでは超解像画像を得るために2つの蛍光色素を必要とするため、マルチカラー化は容易ではなかった。その後に報告されたdSTORM (direct STORM)<ref><pubmed> 18646237 </pubmed></ref>やGSDIM(Ground-state depletion  
and single-molecule return)<ref><pubmed> 18794861 </pubmed></ref>ではこの問題が解決された。これらの方法では、蛍光色素の暗状態からの回復が別の蛍光色素の近接や励起光無しでもある確率で(稀にではあるが)起こる事を利用する。そのためCy3とその励起光(緑色)無しにも、視野内のCy5を疎らにオンに保つことが可能となる。こうして1つの蛍光色素で超解像画像が得られるようになりマルチカラー化が容易となった。<br>
and single-molecule return)<ref><pubmed> 18794861 </pubmed></ref>ではこの問題が解決された。これらの方法では、蛍光色素の暗状態からの回復が別の蛍光色素の近接や励起光無しでもある確率で(稀にではあるが)起こる事を利用する。そのためCy3とその励起光(緑色)無しにも、視野内で疎らなCy5がオンになる。こうして1つの蛍光色素で超解像画像が得られるようになりマルチカラー化が容易となった。<br>


====<small>その他の方法</small>====
====<small>その他の方法</small>====
41

回編集