「逆行性伝達物質」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
英:retrograde messengers, retrograde signals  
英:retrograde messengers, retrograde signals  


 逆行性伝達物質とは化学シナプスにおいてシナプス後部から細胞外へ放出されて、シナプス前終末に作用しシナプス伝達を調節する物質をさす(図1)。逆行性伝達物質によってシナプス後細胞はシナプス前側の活動を調節することができる。逆行性伝達物質には様々な種類があるが大別すると、脂質、気体分子、神経栄養因子、ペプチド、古典的神経伝達物質がある。逆行性伝達物質を介した逆行性シナプス伝達は新規シナプス形成やその維持に重要な役割を担っているが、本稿では特に成熟したシナプスにおけるシナプス可塑性に限定して述べる。 [[Image:Yukihashimotodani fig 5.jpg|thumb|right|400px|図1. 逆行性シナプス伝達]]  
 逆行性伝達物質とは化学シナプスにおいてシナプス後部から細胞外へ放出されて、シナプス前終末に作用しシナプス伝達を調節する物質をさす(図1)。逆行性伝達物質によってシナプス後細胞はシナプス前側の活動を調節することができる。逆行性伝達物質には様々な種類があるが大別すると、脂質、気体分子、神経栄養因子、ペプチド、古典的神経伝達物質がある。逆行性伝達物質を介した逆行性シナプス伝達は新規シナプス形成やその維持に重要な役割を担っているが、本稿では特に成熟したシナプスにおけるシナプス可塑性に限定して述べる。
[[Image:Yukihashimotodani fig 5.jpg|thumb|right|300px|'''図1.逆行性シナプス伝達''']]  


== 条件  ==
== 条件  ==
7行目: 8行目:
 ある物質が逆行性伝達物質として働くかどうかは以下の基準を満たす必要があると提唱されている<ref><pubmed> 19640475 </pubmed></ref>。  
 ある物質が逆行性伝達物質として働くかどうかは以下の基準を満たす必要があると提唱されている<ref><pubmed> 19640475 </pubmed></ref>。  


 1)逆行性伝達物質を合成あるいは放出する能力がシナプス後部にある。2)合成や放出の過程を阻害すると逆行性伝達が起こらなくなる。3)シナプス前終末に逆行性伝達物質の標的となる受容器が存在する。4)その受容器を阻害すると逆行性伝達が起こらなくなる。5)その受容器のアクチベーター、あるいは逆行性伝達物質を投与することで逆行性伝達と同様の効果が発揮される。  
#逆行性伝達物質を合成あるいは放出する能力がシナプス後部にある。
#合成や放出の過程を阻害すると逆行性伝達が起こらなくなる。
#シナプス前終末に逆行性伝達物質の標的となる受容器が存在する。
#その受容器を阻害すると逆行性伝達が起こらなくなる。
#その受容器のアクチベーター、あるいは逆行性伝達物質を投与することで逆行性伝達と同様の効果が発揮される。  


== 種類  ==
== 種類  ==
15行目: 20行目:
 脂質のなかではエンドカンナビノイドが最も詳しく調べられている逆行性伝達物質である<ref name="ref2"><pubmed> 19126760 </pubmed></ref>。エンドカンナビノイドによる逆行性シナプス伝達はシナプス前終末に局在するカンナビノイド受容体I型(CB1)の活性化を介して引き起こされる。脳の非常に広い範囲の多くのシナプスでこの逆行性シナプス伝達が報告されている。詳しくは後述。  
 脂質のなかではエンドカンナビノイドが最も詳しく調べられている逆行性伝達物質である<ref name="ref2"><pubmed> 19126760 </pubmed></ref>。エンドカンナビノイドによる逆行性シナプス伝達はシナプス前終末に局在するカンナビノイド受容体I型(CB1)の活性化を介して引き起こされる。脳の非常に広い範囲の多くのシナプスでこの逆行性シナプス伝達が報告されている。詳しくは後述。  


  アラキドン酸が海馬において逆行性伝達物質として働き長期増強(long-term potentiation: LTP)や長期抑圧(long-term depression: LTD)を引き起こすことが提案された<ref><pubmed> 2571939 </pubmed></ref><ref><pubmed> 8606806 </pubmed></ref>。しかし、アラキドン酸を逆行性伝達物質と考えるには十分な実験的証拠がなく疑問視されている<ref><pubmed> 9457171 </pubmed></ref>。現在ではアラキドン酸自身ではなく、その代謝産物が逆行性伝達物質として働くことが考えられている<ref><pubmed> 16957004 </pubmed></ref>。海馬CA1においてCOX-2によってアラキドン酸からプロスタグランジンE2が作られ、それが逆行性伝達物質として興奮性シナプス前終末に存在するプロスタグランジンE2受容体を活性化し、シナプス伝達を促進させることが報告されている<ref><pubmed> 16251433 </pubmed></ref>。  
 アラキドン酸が海馬において逆行性伝達物質として働き長期増強(long-term potentiation: LTP)や長期抑圧(long-term depression: LTD)を引き起こすことが提案された<ref><pubmed> 2571939 </pubmed></ref><ref><pubmed> 8606806 </pubmed></ref>。しかし、アラキドン酸を逆行性伝達物質と考えるには十分な実験的証拠がなく疑問視されている<ref><pubmed> 9457171 </pubmed></ref>。現在ではアラキドン酸自身ではなく、その代謝産物が逆行性伝達物質として働くことが考えられている<ref><pubmed> 16957004 </pubmed></ref>。海馬CA1においてCOX-2によってアラキドン酸からプロスタグランジンE2が作られ、それが逆行性伝達物質として興奮性シナプス前終末に存在するプロスタグランジンE2受容体を活性化し、シナプス伝達を促進させることが報告されている<ref><pubmed> 16251433 </pubmed></ref>。  


  エイコサノイドの一種である12-(S)-HPETEが海馬CA1の抑制性ニューロンから放出され興奮性シナプス前終末に存在するTRPV1を活性化しLTDを誘導することが報告されている<ref><pubmed> 18341994 </pubmed></ref>。  
 エイコサノイドの一種である12-(S)-HPETEが海馬CA1の抑制性ニューロンから放出され興奮性シナプス前終末に存在するTRPV1を活性化しLTDを誘導することが報告されている<ref><pubmed> 18341994 </pubmed></ref>。  


=== 気体分子  ===
=== 気体分子  ===
51行目: 56行目:
=== エンドカンナビノイド産生機構  ===
=== エンドカンナビノイド産生機構  ===


 エンドカンナビノイドの一種である2-アラキドノイルグリセロール(2-AG)はシナプス後部のニューロンの脱分極によるカルシウムイオン流入、あるいはGq/11タンパク質共役型受容体の活性化によって作られる(図2)。2-AGは前駆体であるジアシルグリセロール(DG)からDGリパーゼ(DGL)によって作られる。シナプス後ニューロンで強い脱分極が起きると電位依存性カルシウムチャネルが開いてカルシウムイオンが流入する。細胞内カルシウム濃度がマイクロモーラー以上に達すると、2-AGが産生される(図2)。また、グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体といったGq/11タンパク質共役型受容体の活性化によってPLCβを介する経路で2-AG産生が引き起こされる(図2)。この場合、細胞内カルシウム上昇は必要ない<ref><pubmed> 11516402 </pubmed></ref>。さらに、こういった受容体の活性化と脱分極による細胞内へのカルシウムイオン流入が同時に起こると、2-AG産生が相乗的に促進される。これは、PLCβがカルシウム感受性を持つため、受容体活性化と同時に細胞内カルシウム濃度が高まると、PLCβ活性が増強するためである<ref><pubmed> 15664177 </pubmed></ref><ref name="ref40"><pubmed> 16033892 </pubmed></ref> (図2)。 [[Image:Yukihashimotodani fig 6.jpg|thumb|right|400px|図2. エンドカンナビノイドによる逆行性シナプス伝達抑制。 橋本谷祐輝 他:実験医学,Vol.28 No.20:3409-3414,2010より引用]]  
 エンドカンナビノイドの一種である2-アラキドノイルグリセロール(2-AG)はシナプス後部のニューロンの脱分極によるカルシウムイオン流入、あるいはGq/11タンパク質共役型受容体の活性化によって作られる(図2)。2-AGは前駆体であるジアシルグリセロール(DG)からDGリパーゼ(DGL)によって作られる。シナプス後ニューロンで強い脱分極が起きると電位依存性カルシウムチャネルが開いてカルシウムイオンが流入する。細胞内カルシウム濃度がマイクロモーラー以上に達すると、2-AGが産生される(図2)。また、グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体といったGq/11タンパク質共役型受容体の活性化によってPLCβを介する経路で2-AG産生が引き起こされる(図2)。この場合、細胞内カルシウム上昇は必要ない<ref><pubmed> 11516402 </pubmed></ref>。さらに、こういった受容体の活性化と脱分極による細胞内へのカルシウムイオン流入が同時に起こると、2-AG産生が相乗的に促進される。これは、PLCβがカルシウム感受性を持つため、受容体活性化と同時に細胞内カルシウム濃度が高まると、PLCβ活性が増強するためである<ref><pubmed> 15664177 </pubmed></ref><ref name="ref40"><pubmed> 16033892 </pubmed></ref> (図2)。
 
[[Image:Yukihashimotodani fig 6.jpg|thumb|right|300px|'''図2.エンドカンナビノイドによる逆行性シナプス伝達抑制'''<br>橋本谷祐輝 他:実験医学,Vol.28 No.20:3409-3414,2010より引用]]  


=== 逆行性シナプス伝達抑圧  ===
=== 逆行性シナプス伝達抑圧  ===


 上記のような刺激によって産生された2-AGは細胞膜を通って逆行性にシナプス前終末に局在するCB1受容体を活性化する。活性化したCB1受容体は共役するGi/oタンパク質を介してシナプス前終末の電位依存性カルシウムチャネルの開口を抑制し、神経伝達物質の放出を抑制する(図2)。ニューロンの脱分極によって生じるエンドカンナビノイドによる逆行性シナプス伝達抑圧をdepolarization-induced suppression of inhibition/excitation (DSI/DSE)とよぶ。脱分極したニューロンに入力する抑制性入力が抑えられる場合がDSI、興奮性入力が抑えられる場合がDSEである。単なる脱分極と違い、生理的条件に近いシナプス刺激によってエンドカンナビノイドによる短期の逆行性シナプス伝達抑圧が起こることがわかっている<ref><pubmed> 14502290 </pubmed></ref><ref><pubmed> 15564588 </pubmed></ref><ref name="ref40" />。この場合、上述のようなGq/11タンパク質共役型受容体の活性化と細胞内へのカルシウム流入の相乗効果で2-AGが作られると考えられる<ref><pubmed> 17404373 </pubmed></ref>。  
 上記のような刺激によって産生された2-AGは細胞膜を通って逆行性にシナプス前終末に局在するCB1受容体を活性化する。活性化したCB1受容体は共役するGi/oタンパク質を介してシナプス前終末の電位依存性カルシウムチャネルの開口を抑制し、神経伝達物質の放出を抑制する(図2)。ニューロンの脱分極によって生じるエンドカンナビノイドによる逆行性シナプス伝達抑圧をdepolarization-induced suppression of inhibition/excitation (DSI/DSE)とよぶ。脱分極したニューロンに入力する抑制性入力が抑えられる場合がDSI、興奮性入力が抑えられる場合がDSEである。単なる脱分極と違い、生理的条件に近いシナプス刺激によってエンドカンナビノイドによる短期の逆行性シナプス伝達抑圧が起こることがわかっている<ref><pubmed> 14502290 </pubmed></ref><ref><pubmed> 15564588 </pubmed></ref><ref name="ref40" />。この場合、上述のようなGq/11タンパク質共役型受容体の活性化と細胞内へのカルシウム流入の相乗効果で2-AGが作られると考えられる<ref><pubmed> 17404373 </pubmed></ref>。  


 エンドカンナビノイドは細胞外を非常に限られた範囲でしか拡散できない。海馬では10~20μm程度しか拡散しないと考えられている。2-AGの分解酵素であるモノアシルグリセロールリパーゼ(MGL)はシナプス前終末に局在しており、逆行性に運ばれて来た2-AGを速やかに分解する<ref><pubmed> 17267577 </pubmed></ref>(図2)
 エンドカンナビノイドは細胞外を非常に限られた範囲でしか拡散できない。海馬では10~20μm程度しか拡散しないと考えられている。2-AGの分解酵素であるモノアシルグリセロールリパーゼ(MGL)はシナプス前終末に局在しており、逆行性に運ばれて来た2-AGを速やかに分解する<ref><pubmed> 17267577 </pubmed></ref>(図2)


=== LTD  ===
=== LTD  ===
63行目: 70行目:
 エンドカンナビノイドはLTDの誘導にも寄与する。興奮性シナプスでみられるエンドカンナビノイド依存性のLTDは、背側線条体、大脳皮質、側坐核、小脳、海馬、背側蝸牛神経核などで報告されている。一方、抑制性シナプスでは、扁桃体、海馬、大脳皮質、腹側被蓋野などで報告がある。  
 エンドカンナビノイドはLTDの誘導にも寄与する。興奮性シナプスでみられるエンドカンナビノイド依存性のLTDは、背側線条体、大脳皮質、側坐核、小脳、海馬、背側蝸牛神経核などで報告されている。一方、抑制性シナプスでは、扁桃体、海馬、大脳皮質、腹側被蓋野などで報告がある。  


 エンドカンナビノイド依存性のLTD(eCB-LTD)誘導にはLTD誘発刺激中にエンドカンナビノイドが産生されてシナプス前終末のCB1受容体が活性化されることが必要である。海馬ではCB1受容体が5−10分間、活性化されることがLTD誘導に必須であることが示されており、LTDの維持にはCB1受容体活性は不要となる<ref><pubmed> 12741992 </pubmed></ref>。LTD誘発刺激条件は脳部位によって様々であるがシナプス後部ニューロンへのカルシウムイオン流入あるいはグループI代謝型グルタミン酸受容体の活性化を介してエンドカンナビノイド産生が引き起こされることが明らかになっている <ref name="ref50"><pubmed> 19575681 </pubmed></ref>。エンドカンナビノイドは興奮性シナプスで作られるので、抑制性シナプスで起こるeCB-LTDは異シナプス的に誘導されるLTDである。小脳を除いて、eCB-LTDの発現は、これまですべてシナプス前性の可塑的変化によることが示されている。しかし数分間のCB1受容体の活性化がどのようにして長期の神経伝達物質放出の抑制を誘導するのかについてはまだよくわかっていない。海馬においてはシナプス前終末におけるRIM1αの作用と、カルシウムイオン流入によるカルシニューリンの活性化が必須であることが示されている<ref name="ref50" />。  
 エンドカンナビノイド依存性のLTD(eCB-LTD)誘導にはLTD誘発刺激中にエンドカンナビノイドが産生されてシナプス前終末のCB1受容体が活性化されることが必要である。海馬ではCB1受容体が5-10分間、活性化されることがLTD誘導に必須であることが示されており、LTDの維持にはCB1受容体活性は不要となる<ref><pubmed> 12741992 </pubmed></ref>。LTD誘発刺激条件は脳部位によって様々であるがシナプス後部ニューロンへのカルシウムイオン流入あるいはグループI代謝型グルタミン酸受容体の活性化を介してエンドカンナビノイド産生が引き起こされることが明らかになっている <ref name="ref50"><pubmed> 19575681 </pubmed></ref>。エンドカンナビノイドは興奮性シナプスで作られるので、抑制性シナプスで起こるeCB-LTDは異シナプス的に誘導されるLTDである。小脳を除いて、eCB-LTDの発現は、これまですべてシナプス前性の可塑的変化によることが示されている。しかし数分間のCB1受容体の活性化がどのようにして長期の神経伝達物質放出の抑制を誘導するのかについてはまだよくわかっていない。海馬においてはシナプス前終末におけるRIM1αの作用と、カルシウムイオン流入によるカルシニューリンの活性化が必須であることが示されている<ref name="ref50" />。  


== 参考文献  ==
== 参考文献  ==


<references /> (執筆者:橋本谷祐輝、狩野方伸 担当編集委員:河西春郎)
<references />
 
 
(執筆者:橋本谷祐輝、狩野方伸 担当編集委員:河西春郎)