「運動視」の版間の差分

ナビゲーションに移動 検索に移動
705 バイト追加 、 2019年5月20日 (月)
編集の要約なし
編集の要約なし
編集の要約なし
(同じ利用者による、間の6版が非表示)
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">[http://researchmap.jp/hkumano 熊野 弘紀]</font><br>
<font size="+1">[http://researchmap.jp/hkumano 熊野 弘紀]、[http://researchmap.jp/takanoriuka 宇賀 貴紀]</font><br>
''山梨大学大学院総合研究部''<br>
''山梨大学大学院総合研究部''<br>
<font size="+1">[http://researchmap.jp/takanoriuka 宇賀 貴紀]</font><br>
DOI:<selfdoi /> 原稿受付日:2016年2月24日 原稿完成日:2019年5月20日<br>
''山梨大学大学院総合研究部''<br>
DOI:<selfdoi /> 原稿受付日:2016年2月24日 原稿完成日:2016年月日<br>
担当編集委員:[http://researchmap.jp/ichirofujita 藤田 一郎](大阪大学 大学院生命機能研究科)<br>
担当編集委員:[http://researchmap.jp/ichirofujita 藤田 一郎](大阪大学 大学院生命機能研究科)<br>
</div>
</div>


{{box|text=
{{box|text=
 外界で動いている物体の運動方向や速さを知覚する視覚機能を運動視という。初期視覚野にある運動検出器は、前額平行面上における局所空間の運動方向や速さの成分を検出し、高次視覚野で局所成分が様々な形で統合されることで大域的な運動検出が可能となる。特に、初期視覚野の運動検出器では特定の方位に垂直な局所運動成分のみ検出されるため、窓問題(小さな窓の向こう側の動きの方向を正しく知ることができないという問題)にさらされるが、高次視覚野では複数の方位の成分を統合することで窓問題が解かれている。高次視覚野で行われる大域運動検出のメカニズムで検出できるのは剛体の並進運動のみであり、物体の回転や拡大・縮小、形が変化するような流体の運動などがどのように捉えられているかは未解明である。物体の動き以外に、自身の動きによっても網膜上で外界像全体の像の動きが生じる。このような外界全体像の動きはオプティックフローと呼ばれ、高次視覚野で検出が行われる。さらに、物体運動は奥行きや物体形状、素材の識別などの手がかりにもなりうる。運動視の研究は、運動視の神経メカニズムのみならず、知覚判断の仕組みについても重要な知見をもたらした。
 外界で動いている物体の運動方向や速さを知覚する視覚機能を運動視という。初期視覚野にある運動検出器は、前額平行面上における局所空間の運動方向や速さの成分を検出し、中位の視覚野で局所成分が様々な形で統合されることで大域的な運動検出が可能となる。特に、初期視覚野の運動検出器では特定の方位に垂直な局所運動成分のみ検出されるため、窓問題(小さな窓の向こう側の動きの方向を正しく知ることができないという問題)にさらされるが、中位の視覚野では複数の方位の成分を統合することで窓問題が解かれている。この大域運動検出のメカニズムで検出できるのは剛体の並進運動のみであり、物体の回転や拡大・縮小、形が変化するような流体の運動を検出するためには更なる処理が必要である。物体の動き以外に、自身の動きによっても網膜上で外界像全体の像の動きが生じる。このような外界全体像の動きはオプティックフローと呼ばれ、高次の視覚野で検出が行われる。さらに、物体運動は奥行きや物体形状、素材の識別などの手がかりにもなりうる。運動視の研究は、運動視の神経メカニズムのみならず、知覚判断の仕組みについても重要な知見をもたらした。}}
}}


== 運動視とは ==
== 運動視とは ==
21行目: 18行目:
=== 一次視覚野 ===
=== 一次視覚野 ===
  [[image:運動視1.png|thumb|300px|'''図1. エネルギーモデル'''<br>時空間軸上での傾きを検出する2つのフィルターの出力を2乗・加算することで、運動エネルギーを検出する。]]
  [[image:運動視1.png|thumb|300px|'''図1. エネルギーモデル'''<br>時空間軸上での傾きを検出する2つのフィルターの出力を2乗・加算することで、運動エネルギーを検出する。]]
 動いている物体は、時々刻々と、その位置を変える。前額平行面内で一方向に等速で動いている物体の軌跡は、時間軸・空間軸のつくる2次元平面上では斜めの直線となって表される。そのため、運動を検出するには、この時空間軸上での傾きを検出すればよい。一次視覚野の単純型細胞のなかには、時空間軸上での傾きを検出する細胞が存在する<ref name=ref5><pubmed>15953422</pubmed></ref>[5]。さらに複雑型細胞では、受容野内のどの位置で物体が動いても正しく運動が検出されるための統合が行われる<ref name=ref5 />[5]。このような初期視覚系での運動検出のモデルとして、エネルギーモデル('''図1''')が提唱されている<ref name=ref2></ref>[2]。エネルギーモデルでは、神経細胞の反応プロファイルの時空間軸上での傾きを検出し、位相の異なる2つの線形フィルター(単純型細胞に相当)のそれぞれの出力を2乗し、加算することで運動エネルギーを検出する。実際に、霊長類の一次視覚野ニューロンの特徴はこのエネルギーモデルの予測とよくあっている。
 動いている物体は、時々刻々と、その位置を変える。前額平行面内で一方向に等速で動いている物体の軌跡は、時間軸・空間軸のつくる2次元平面上では斜めの直線となって表される。そのため、運動を検出するには、この時空間軸上での傾きを検出すればよい。一次視覚野の単純型細胞のなかには、時空間軸上での傾きを検出する細胞が存在する<ref name=ref5><pubmed>15953422</pubmed></ref>[5]。さらに複雑型細胞では、受容野内のどの位置で物体が動いても運動が検出されるための統合が行われる<ref name=ref5 />[5]。このような初期視覚系での運動検出のモデルとして、エネルギーモデル('''図1''')が提唱されている<ref name=ref2></ref>[2]。エネルギーモデルでは、神経細胞の反応プロファイルの時空間軸上での傾きを検出し、位相の異なる2つの線形フィルター(単純型細胞に相当)のそれぞれの出力を2乗し、加算することで運動エネルギーを検出する。実際に、霊長類の一次視覚野ニューロンの特徴はこのエネルギーモデルの予測とよくあっている。


 ウサギでは運動検出細胞が網膜にある<ref name=ref6><pubmed>14220259</pubmed></ref>[6]。
 ウサギでは運動検出細胞が網膜にある<ref name=ref6><pubmed>14220259</pubmed></ref>[6]。
35行目: 32行目:
== 窓問題 ==
== 窓問題 ==
[[image:運動視2.png|thumb|300px|'''図2. 窓問題'''<br>窓の奥に見える物体が上に動いているにも関わらず、窓を通して見ると左上方向(輪郭線の垂直方向)に動いて見えてしまう。そのため、物体の本当の動きは分からない。]]
[[image:運動視2.png|thumb|300px|'''図2. 窓問題'''<br>窓の奥に見える物体が上に動いているにも関わらず、窓を通して見ると左上方向(輪郭線の垂直方向)に動いて見えてしまう。そのため、物体の本当の動きは分からない。]]
[[image:Plaid and gratings.mp4|thumb|350px|'''図3. 運動統合を調べるのに用いられる視覚刺激'''<br>動く方向の異なる2つの縞模様を重ね合わせることで、各縞模様とは異なる方向に動く格子縞模様を作ることができる。]]
[[image:Plaid and gratings.mp4|thumb|350px|'''動画1. 運動統合を調べるのに用いられる視覚刺激'''<br>動く方向の異なる2つの縞模様を重ね合わせることで、各縞模様とは異なる方向に動く格子縞模様を作ることができる。]]


 運動視において視覚系が直面する問題として窓問題(aperture problem)が挙げられる。運動する物体を小さい窓枠から覗いたときには、物体全体の運動方向によらず、窓枠から見える物体の局所輪郭線に直交する方向の運動成分が検出されてしまう('''図2''')。これを窓問題という。
 運動視において視覚系が直面する問題として窓問題(aperture problem)が挙げられる。運動する物体を小さい窓枠から覗いたときには、物体全体の運動方向によらず、窓枠から見える物体の局所輪郭線に直交する方向の運動成分が検出されてしまう('''図2''')。これを窓問題という。


 物体運動の最初の検出が行われる一次視覚野は、ニューロンの受容野が小さいため、実質的には窓枠となっている。このため、運動を正しく計算するには、一次視覚野で検出された局所運動を空間・方位にわたって統合する必要がある。この統合過程は一次視覚野より高次の領野、MT野やMST野で行われると考えられている<ref name=ref15><pubmed>9604103</pubmed></ref>[15]。二つの縞模様を重ねた格子縞模様('''図3''')と呼ばれる視覚刺激を用いた生理学的研究によると、MT野では約1/3のニューロンが<ref name=ref16>'''Movshon JA, Adelson EH, Gizzi MS, and Newsome WT.'''<[[br]].The analysis of moving visual patterns.<br>
 物体運動の最初の検出が行われる一次視覚野は、ニューロンの受容野が小さいため、実質的には窓枠となっている。このため、一次視覚野で検出される運動信号はあいまいさを含んでおり、物体の真の運動を必ずしも反映しない。運動を正しく検出するには、一次視覚野で検出されたあいまいさを含む局所運動信号を空間・方位にわたって統合し、あいまいさを除去する必要がある。この統合過程は一次視覚野より高次の領野、MT野やMST野で行われると考えられている<ref name=ref15><pubmed>9604103</pubmed></ref>[15]。二つの縞模様を重ねた格子縞模様('''動画1''')と呼ばれる視覚刺激を用いた生理学的研究によると、MT野では約1/3のニューロンが<ref name=ref16>'''Movshon JA, Adelson EH, Gizzi MS, and Newsome WT.'''<[[br]].The analysis of moving visual patterns.<br>
''Pattern Recognition Mechanisms''. Rome: Vatican Press: 1985, 117-151.</ref>[16]、MST野ではほぼ全てのニューロンが<ref name=ref17><pubmed>19864582</pubmed></ref>[17]この統合過程に関わっていると示唆されている。実際、MT野ニューロンが反応する方位と時空間周波数をマッピングすると、個々のニューロンは、特定の方向に動いている物体から生成される方位・時空間周波数成分を統合していることが判明している<ref name=ref18><pubmed>21994372</pubmed></ref>[18]。
''Pattern Recognition Mechanisms''. Rome: Vatican Press: 1985, 117-151.</ref>[16]、MST野ではほぼ全てのニューロンが<ref name=ref17><pubmed>19864582</pubmed></ref>[17]この統合過程に関わっていると示唆されている。実際、MT野ニューロンが反応する方位と時空間周波数をマッピングすると、個々のニューロンは、特定の方向に動いている物体から生成される方位・時空間周波数成分を統合していることが判明している<ref name=ref18><pubmed>21994372</pubmed></ref>[18]。
 
== 神経細胞による様々な運動の処理 ==
== 高次の運動 ==
===高次運動の知覚 ===
 輝度の変化で定義できる運動を一次運動(first-order motion)と呼ぶ。一次運動はエネルギーモデルのような運動検出器で検出できる。平均輝度では定義できないが、輝度の組み合わせ(例えばコントラスト)で定義できる運動を二次運動(second-order motion)と呼ぶ。運動残効(motion aftereffect)や脳機能イメージング研究から、一次運動の処理と二次運動の処理は異なる脳部位で行われていることが判明している<ref name=ref19><pubmed> 3832611 </pubmed></ref><ref name=ref20><pubmed> 17065251 </pubmed></ref>[19] [20]。
 輝度の変化で定義できる運動を一次運動(first-order motion)と呼ぶ。一次運動はエネルギーモデルのような運動検出器で検出できる。平均輝度では定義できないが、輝度の組み合わせ(例えばコントラスト)で定義できる運動を二次運動(second-order motion)と呼ぶ。運動残効(motion aftereffect)や脳機能イメージング研究から、一次運動の処理と二次運動の処理は異なる脳部位で行われていることが判明している<ref name=ref19><pubmed> 3832611 </pubmed></ref><ref name=ref20><pubmed> 17065251 </pubmed></ref>[19] [20]。


== 奥行き運動 ==
===奥行き運動の知覚===
 上記は、前額平行面における並進運動に関する運動視であるが、現実の外界世界は3次元であり、奥行き方向に運動する物体も存在する。そのような奥行き運動を検出する方法は少なくとも2つあり、いずれも両眼性である。
 上記は、前額平行面における並進運動に関する運動視であるが、現実の外界世界は3次元であり、奥行き方向に運動する物体も存在する。そのような奥行き運動を検出する方法は少なくとも2つあり、いずれも両眼性である。


56行目: 53行目:
 心理物理学的および脳機能イメージングを用いた研究により、[[ヒト]]は両眼間速度差を用いて奥行き運動を知覚していると示唆される。また、MT野にはそれぞれの方法を用いて推定された奥行き運動に反応するニューロンがある。
 心理物理学的および脳機能イメージングを用いた研究により、[[ヒト]]は両眼間速度差を用いて奥行き運動を知覚していると示唆される。また、MT野にはそれぞれの方法を用いて推定された奥行き運動に反応するニューロンがある。


== オプティックフロー ==
{| width="400" border="1" cellpadding="1" cellspacing="1" style="float:right" class="wikitable"
 自身の動きによって生じる網膜上の動きをオプティックフローと呼ぶ。オプティックフローは並進運動、回転運動、拡大縮小運動に分解できる。例えば、自身が前に進むと、視線方向を中心に拡大パターンの運動が生じる。逆に、拡大運動を見ただけで前に進んでいる感覚が生じる。MST野には並進、回転、拡大縮小、それぞれの運動に反応するニューロンが見つかっている<ref name=ref14 />[14]。
|-
| <div class="thumb tright" style="width:580px;"><youtube>cGIpSHw7evg</youtube></div>
|-
| <small>'''動画2.オプティックフローの例'''<br>[https://www.youtube.com/watch?v=cGIpSHw7evg YouTube動画、Example of 100% Radial Optic Flow (no random dots) with the FOE in Center]より</small>
|}
===オプティックフローの知覚===
 自身の動きによって生じる網膜上の動きをオプティックフローと呼ぶ。オプティックフローは並進運動、回転運動、拡大縮小運動に分解できる。例えば、自身が前に進むと、視線方向を中心に拡大パターンの運動が生じる('''動画2''')。逆に、拡大運動を見ただけで前に進んでいる感覚が生じる。MST野には並進、回転、拡大縮小、それぞれの運動に反応するニューロンが見つかっている<ref name=ref14 />[14]。


== 運動以外の物体の性質を知覚する手がかりとしての運動 ==
==運動方向弁別の神経機構==
 
  [[ファイル:Dots 3coherences.mp4|サムネイル|350px|'''動画3.運動方向弁別課題に用いられるランダムドット刺激'''<br>同じ速度で動くシグナルドットとランダムな速度で動くノイズドットから構成される。シグナルドットの割合をmotion coherenceといい、これを高くすると、動きを知覚しやすくなる。]]
 網膜上の動きは、物体の運動そのものの知覚のみならず、物体の様々な性質を特定するのに使われる。例えば、運動からの物体形状の推定(shape-from-motion)や運動視差(motion-parallax)を用いた奥行きの推定などが挙げられる。また、剛体ではない物体の性質も運動から再現できる。例えば、心理学物理学的研究から、液体の粘性や透明感が運動情報のみから推定できることがわかりつつある<ref name=ref24><pubmed>25102388</pubmed></ref>[24]。
 
== 運動方向弁別 ==
  [[ファイル:Dots 3coherences.mp4|サムネイル|350px|'''図4.運動方向弁別課題に用いられるランダムドット刺激'''<br>同じ速度で動くシグナルドットとランダムな速度で動くノイズドットから構成される。シグナルドットの割合を高くすると、動きを知覚しやすくなる。]]
 以上述べてきたように、視覚系の様々な領域に、動き情報の様々な側面を伝える細胞が存在するが、これらの細胞が実際に動きの知覚に関わっていることを示す強い証拠が得られている。これらの証拠は、多数のドットで構成されたランダムドット刺激の運動方向を弁別する課題を遂行しているサルの大脳皮質からニューロン活動を記録・解析することによって得られた。
 以上述べてきたように、視覚系の様々な領域に、動き情報の様々な側面を伝える細胞が存在するが、これらの細胞が実際に動きの知覚に関わっていることを示す強い証拠が得られている。これらの証拠は、多数のドットで構成されたランダムドット刺激の運動方向を弁別する課題を遂行しているサルの大脳皮質からニューロン活動を記録・解析することによって得られた。


 運動方向弁別課題では、ランダムドットの動きの方向を答えるが、一定方向に動くドットの割合(motion coherence、'''図4''')を変えることで動きの強さを調整できるため、ある正答率を得るために必要なcoherenceを運動視の閾値として定義できる。閾値は動物でもヒトでも測定できる。以下、一連の研究で明らかになった重要事項を解説する。
 運動方向弁別課題では、ランダムドットの動きの方向を答えるが、一定方向に動くドットの割合(motion coherence、'''動画3''')を変えることで動きの強さを調整できるため、ある正答率を得るために必要なcoherenceを運動視の閾値として定義できる。閾値は動物でもヒトでも測定できる。以下、一連の研究で明らかになった重要事項を解説する。


=== 運動方向弁別能力とニューロンの感度の比較 ===
=== 運動方向弁別能力とニューロンの感度の比較 ===
76行目: 75行目:


=== ニューロン間のノイズ相関 ===
=== ニューロン間のノイズ相関 ===
 複数のニューロンが独立の振る舞いをしているのであれば、多数のニューロンの活動を足し合わせることで、ノイズが除去され感度は良くなる。しかし、実際にはニューロン活動は独立ではない。ニューロン活動のばらつきの試行間相関をノイズ相関と呼ぶ。ニューロン間の平均ノイズ相関をrとすると、いくら多数のニューロンの情報を足し合わせても、感度は1/√r倍までしか良くならない。MT野ニューロンのノイズ相関は、最適運動方向の似たニューロン間で平均約0.2であり[27]、ニューロン集団の感度は単一ニューロンと比較して2倍程度しか良くならない。計算機シミュレーションによると、50 – 100個より多くのニューロンの活動を足し合わせても、感度はそれ以上向上しない。そのため、50 – 100個程度のニューロン集団が大脳皮質での最小の機能単位ではないかと示唆されている<ref name=ref28><pubmed>8022482</pubmed></ref>。
 複数のニューロンが独立の振る舞いをしているのであれば、多数のニューロンの活動を足し合わせることで、ノイズが除去され感度は良くなる。しかし、実際にはニューロン活動は独立ではない。ニューロン活動のばらつきの試行間相関をノイズ相関と呼ぶ。ニューロン間の平均ノイズ相関をrとすると、いくら多数のニューロンの情報を足し合わせても、感度は1/√r倍までしか良くならない。MT野ニューロンのノイズ相関は、最適運動方向の似たニューロン間で平均約0.2であり<ref name=ref27><pubmed>8022482</pubmed></ref> [27]、ニューロン集団の感度は単一ニューロンと比較して2倍程度しか良くならない。計算機シミュレーションによると、50 – 100個より多くのニューロンの活動を足し合わせても、感度はそれ以上向上しない。そのため、50 – 100個程度のニューロン集団が大脳皮質での最小の機能単位ではないかと示唆されている<ref name=ref28><pubmed> 9570816 </pubmed></ref>。


=== 運動方向の判断の神経メカニズム ===
=== 運動方向の判断の神経メカニズム ===
 MT野を破壊すると運動方向弁別ができなくなり<ref name=ref13 />[13]、電気刺激すると判断がバイアスされるため<ref name=ref29><pubmed>1607944</pubmed></ref>[29]、MT野の活動は本課題の遂行に必要十分である。しかし、MT野ニューロンは動きに関する感覚情報を提供するが、判断を司るわけではない。運動方向の判断には運動情報を時間的に積分する機構が重要であると考えられている。頭頂葉のLIP野<ref name=ref30><pubmed>12417672</pubmed></ref>[30]、前頭眼野(FEF)、前頭前野<ref name=ref31><pubmed>10195203</pubmed></ref>[31]や上丘<ref name=ref32><pubmed>10325224</pubmed></ref>[32]には、運動情報の時間積分を反映した神経活動が見られる。これらの領野の活動は、判断を眼球運動で回答したときに見られ、腕の運動で回答したときには頭頂葉内側部のMIP野においても見られる<ref name=ref33><pubmed>25762677</pubmed></ref>[33]。判断を反映した活動が、閾値に到達すると判断が確定すると考えられている<ref name=ref34><pubmed>17600525</pubmed></ref>[34]。このように考えると、判断が簡単なときには反応時間が短く、難しいときには反応時間が長いことを説明できる。
 MT野を破壊すると運動方向弁別ができなくなり<ref name=ref13 />[13]、電気刺激すると判断がバイアスされるため<ref name=ref29><pubmed>1607944</pubmed></ref>[29]、MT野の活動は本課題の遂行に必要十分である。しかし、MT野ニューロンは動きに関する感覚情報を提供するが、判断を司るわけではない。運動方向の判断には運動情報を時間的に積分する機構が重要であると考えられている。頭頂葉のLIP野<ref name=ref30><pubmed>12417672</pubmed></ref>[30]、前頭眼野(FEF)、前頭前野<ref name=ref31><pubmed>10195203</pubmed></ref>[31]や上丘<ref name=ref32><pubmed>10325224</pubmed></ref>[32]には、運動情報の時間積分を反映した神経活動が見られる。これらの領野の活動は、判断を眼球運動で回答したときに見られ、腕の運動で回答したときには頭頂葉内側部のMIP野においても見られる<ref name=ref33><pubmed>25762677</pubmed></ref>[33]。判断を反映した活動が、閾値に到達すると判断が確定すると考えられている<ref name=ref34><pubmed>17600525</pubmed></ref>[34]。このように考えると、判断が簡単なときには反応時間が短く、難しいときには反応時間が長いことを説明できる。


== 運動以外の物体の性質を知覚する手がかりとしての運動 ==
 網膜上の動きは、物体の運動そのものの知覚のみならず、物体の様々な性質を特定するのに使われる。例えば、運動からの物体形状の推定(shape-from-motion)や運動視差(motion-parallax)を用いた奥行きの推定などが挙げられる。また、剛体ではない物体の性質も運動から再現できる。例えば、心理学物理学的研究から、液体の粘性や透明感が運動情報のみから推定できることがわかりつつある<ref name=ref24><pubmed>25102388</pubmed></ref>[24]。


==関連項目==
==関連項目==

案内メニュー