「錐体細胞」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
[[Image:錐体細胞 図1.jpg|thumb|250px|<b>図1. 大脳皮質5層の錐体細胞(ラット)</b><br />5層に錐体の細胞体があり、1層に向けて尖端樹状突起を伸ばしている。尖端樹状突起の末端は房状突起となって終わる。細胞体の基部からは細い軸索と複数の基底樹状突起が伸びている。]]  
[[Image:錐体細胞 図1.jpg|thumb|250px|<b>図1. 大脳皮質5層の錐体細胞(ラット)</b><br />5層に錐体の細胞体があり、1層に向けて尖端樹状突起を伸ばしている。尖端樹状突起の末端は房状突起となって終わる。細胞体の基部からは細い軸索と複数の基底樹状突起が伸びている。]]  


 典型的な錐体細胞では、尖端樹状突起(apical dendrite)と呼ばれる一本の樹状突起が錐体形をした細胞体の頂点から生じ、斜め方向に分枝(oblique branch)を出しながら、数百μmに渡って一方向に直線的に伸びる (図1)。多くの場合、oblique branchはあまり分岐を繰り返さない。尖端樹状突起の末端は、[[房状分枝]](tuft)を形成して終わることが多い。また、数本の基底樹状突起(basal dendrite)が、細胞体の底辺部から伸び、細胞体周辺の比較的限局した領域で分枝を出し、全体として半球ないし球状(半径およそ300μm)に広がる。樹状突起は棘突起を豊富に持ち(錐体細胞1個当たりの棘突起数は海馬CA1で約30000個、大脳皮質[[視覚野]]で約15000個と推定されている<ref name="ref1">'''Fiala JC, Harris KM.'''<br> Dendrite structure. In: Dendrites <br>(Stuart G, Sprutson N, Hausser M eds), pp1-34. ''Oxford University press'', 2007.</ref>)、興奮性シナプスの多くは棘突起上に形成される。棘突起の形状や大きさ、安定性は学習の影響を受けることが知られている<ref name="ref2"><pubmed>15190253</pubmed></ref>。興奮性入力の多くは、他の錐体細胞や視床から受けており、それらの興奮性シナプスは主に棘突起上に形成される。他方、抑制性入力は細胞体や樹状突起の幹に入力する割合が高い。以下、脳内の各部位における錐体細胞について述べる。  
 典型的な錐体細胞では、尖端樹状突起(apical dendrite)と呼ばれる一本の樹状突起が錐体形をした細胞体の頂点から生じ、斜め方向に分枝(oblique branch)を出しながら、数百μmに渡って一方向に直線的に伸びる (図1)。多くの場合、oblique branchはあまり分岐を繰り返さない。尖端樹状突起の末端は、[[房状分枝]](tuft)を形成して終わることが多い。また、数本の基底樹状突起(basal dendrite)が、細胞体の底辺部から伸び、細胞体周辺の比較的限局した領域で分枝を出し、全体として半球ないし球状(半径およそ300μm)に広がる。樹状突起は棘突起を豊富に持ち(錐体細胞1個当たりの棘突起数は海馬CA1で約30000個、大脳皮質[[視覚野]]で約15000個と推定されている<ref name="ref1">'''Fiala JC, Harris KM.'''<br> Dendrite structure. In: Dendrites <br>(Stuart G, Sprutson N, Hausser M eds), pp1-34. ''Oxford University press'', 2007.</ref>)、棘突起の形状や大きさ、安定性は学習の影響を受けることが知られている<ref name="ref2"><pubmed>15190253</pubmed></ref>。興奮性入力の多くは、他の錐体細胞や視床から受けており、それらの興奮性シナプスは主に棘突起上に形成される。他方、抑制性入力は細胞体や樹状突起の幹に入力する割合が高い。以下、脳内の各部位における錐体細胞について述べる。  


=== 扁桃体  ===
=== 扁桃体  ===
25行目: 25行目:
=== 大脳新皮質  ===
=== 大脳新皮質  ===


 6層構造の新皮質では、1層を除いて、各層ごとに特徴的な形態を持つ錐体細胞が存在する<ref name="ref5">'''Jones EG'''<br>Laminar distribution of output cells. In: Cerebral cortex, Vol 1, Cellular components of the cerebral cortex<br>(Peters A, Jones EG, eds), pp 521–553. New York: Plenum, 1984</ref>。軸索は[[ミエリン]]化しており、白質方向へ延びていきながら局所的な分枝を伸ばし、これにより近隣の細胞群と局所回路を形成する。白質へ入った主軸索の投射先は、その細胞体のある層によって異なる(表を参照)。
 6層構造の新皮質では、1層を除いて、各層ごとに特徴的な形態を持つ錐体細胞が存在する<ref name="ref5">'''Jones EG'''<br>Laminar distribution of output cells. In: Cerebral cortex, Vol 1, Cellular components of the cerebral cortex<br>(Peters A, Jones EG, eds), pp 521–553. New York: Plenum, 1984</ref>。軸索は[[ミエリン]]化しており、白質方向へ延びていきながら局所的な分枝を伸ばし、これにより近隣の細胞群と局所回路を形成する。この局所的な結合は、層構造に関連があることが知られている(表)。また、白質へ入った主軸索の投射先も、その細胞体のある層によって異なる(表)。




60行目: 60行目:
|}
|}


1層には錐体投射細胞は存在しないので省略したが、錐体細胞の尖端樹状突起が密に分岐しており、シナプス結合そのものは豊富である。<br> 層間結合・投射先共に、皮質領野によって違いがみられる。<br> * 結合の同定には様々な手法があり、相互に矛盾しない結果が必ずしも得られているわけではないので、詳細については引用文献などを参照されたい[28],-[32]。錐体細胞のタイプによって、入出力関係に差があることも報告されている[30],[31]。層内の相互結合は全層で見られるので、表では省略した。<br> ** ここで言う皮質投射は同側領野間および半球間投射。<br> *** 4層は感覚野で発達しており、4層ニューロンの多くは同一または近傍の領野にしか投射しない。  
1層には錐体投射細胞は存在しないので省略したが、錐体細胞の尖端樹状突起が密に分岐しており、シナプス結合そのものは豊富である。<br> 層間結合・投射先共に、皮質領野によって違いがみられる。<br> * 結合の同定には様々な手法があり、相互に矛盾しない結果が必ずしも得られているわけではないので、詳細については引用文献などを参照されたい<ref name=ref28><pubmed>19632814</pubmed></ref> <ref name=ref29><pubmed>19186171</pubmed></ref> <ref name=ref30><pubmed>21245906</pubmed></ref> <ref name=ref31><pubmed>16624959</pubmed></ref> <ref name=ref32><pubmed>22171028</pubmed></ref>。錐体細胞のタイプによって、入出力関係に差があることも報告されている<ref name=ref30><pubmed>21245906</pubmed></ref> <ref name=ref31><pubmed>16624959</pubmed></ref>。層内の相互結合は全層で見られるので、表では省略した。<br> ** ここで言う皮質投射は同側領野間および半球間投射。<br> *** 4層は感覚野で発達しており、4層ニューロンの多くは同一または近傍の領野にしか投射しない。