高次運動野

提供:脳科学辞典
2012年4月4日 (水) 22:09時点におけるTfuruya (トーク | 投稿記録)による版

ナビゲーションに移動 検索に移動

英語名: higher-order motor related areas


高次運動関連領野の分類

ファイル:高次運動関連領野図1.jpg
図1. Brodmann およびVogt and Vogt によるサル脳の細胞構築による分類
ファイル:高次運動関連領野図2.jpg
図2. サル皮質運動関連領野の区分 (Takadaらの論文から)
ファイル:高次運動関連領野図3.jpg
図3. Rizzolatti のF-命名法による運動関連領野の分類
ファイル:高次運動関連領野図4.jpg
図4. Strickのグループによる大脳半球内側部の運動関連領野の分類
ファイル:高次運動関連領野図5.jpg
図5. 左:ヒトBrodmannの分類マップに運動関連領野を記載 右:帯状皮質運動野の拡大図

 霊長類動物(サル)では、古典的には Brodmann [1], およびVogt and Vogt [2](図1)が細胞構築から、現在の運動関連領野区分けの原形となる優れた分類を行っている。少し古い脳生理・解剖学の教科書、あるいは専門書の記述では、皮質前頭葉一次運動野(M1)は、中心溝のすぐ前方に位置しており、M1の前方の外側面には運動前野(PM) が、内側面には補足運動野(SMA)が記載されている。

 その後の研究により、大脳皮質外側面の運動関連領野の分類に関して、主に3つの運動野、すなわちM1,PMd,およびPMcに区分される時期が続いた。しかし、最近の研究により、より細分されることが明らかになり、PMdとPMcは、それぞれ前後方向に2つの領域、PMdrPMdc、およびPMvrPMvcに区分されることが多く、外側面全体では5つの運動野に区分けされるようになっている[3](図2)。Rizzolatti のグループによる類似の区分け(F命名法)を図3に示す[4]。一方、Barbas、Pandya[5]、Morecraft[6]はPMv を前後方向ではなく、上・下方向(6Vaと6Vb)に細分しているが、現在までの生理学的知見では前後方向に区分するのが適当であるように思われる。

 上記の外側面に存在する5つの運動関連領野に加えて、大脳半球内側面にも、大まかに区分して3つの運動関連領野、すなわち補足運動野(SMA),前補足運動野(Pre-SMA)、および帯状皮質運動野が存在する。帯状皮質運動野は正確には吻側帯状皮質運動野(CMAr)と、2つの尾側帯状皮質運動野(CMAdとCMAv)に区分されるので、正確には大脳内側面には5つの運動関連領野が存在すると言える[7][8][9][10](図4)。まとめると、サルの大脳皮質には、M1を含め、合計10個の運動関連領野が存在する(眼球運動関連領野を除く)。

 これら10ヶ所の運動関連領野の働きについては現在、精力的に研究が進められているものの、各領野の実体の解明は簡単ではなく、例えばM1の機能に関してでさえ、運動のパラメター、例えば力の大きさ、方向、距離などの制御に関わっていることに疑いはないものの、M1の特定の細胞が、どのパラメターの制御に関わっているかを因果関係的に証明するのは簡単ではない[11]。また、運動前野 (PM) の背側部 (PMd) と腹側部 (PMv) で機能の一端が生理学的に明らかになったのは近年になってからである[12][13][14][15]

 最後に、図5にヒトの運動関連領野の区分をBrodmann の地図に重ねて表示したもの[16]、および帯状皮質の部分を拡大したマップ[17](Ridderinkhof et al., 2004)を示した。ヒトとサルの運動関連領野の構成は基本的に相同であると思われるが、実験上の制限から、解剖学および生理学的にサルで適用されているような区分けは現状では難しい。特に、帯状皮質運動野に関して、サルでは吻側帯状皮質運動野はBrodmann の24野、尾側帯状皮質運動野は23野に存在するが、ヒトでは前帯状皮質運動野(RCZ: rostral cingulate zone, 或いはACC: anterior cingulate cortex)の本体はBrodmann の32野(一部24野)にあり、後帯状皮質運動野(CCZ: caudal cingulate zone)は、ほぼ24野に位置している[18](図5)。近年、ヒトとサルの詳細についての比較なしに、ACCの機能仮説を組み立てている総説・論文があるが、主たる根拠となっているヒトf-MRI 実験から導かれた仮説とサル細胞活動から得られた説の整合性には注意深い実験内容(記録部位・課題設定)の比較検証が必須である。


引用文献

3558879 Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256:211-228

Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde, in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

1705965 Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667-689

Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77: 677- 682

2707351 Georgopoulos AP, Crutcher MD, Schwartz AB (1989) Cognitive spatial-motor processes. 3. Motor cortical prediction of movement direction during an instructed delay period. Exp Brain Res 75:183-194

7538558 He S-Q, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15: 3284-3306

17317152 Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Nwueoviol 17:234-242

17686916 Kurata K (2007) Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys. J Neurophysiol 98:2008-2021

19889843 Kurata K (2010) Conditional selection of contra- and ipsilateral forelimb movements by the dorsal premotor cortex in monkeys. J Neurophysiol 103:262-277

14689472 Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469:37-69

虫明 元、宮井一郎 (2007) 学習と脳:器用さを獲得する脳、サイエンス社

8670662 Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342-353

15486290 Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443-447

11580891 Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889-901

15217388 Takada M, Nambu A, Hatanaka N, Tachibana Y, Miyachi S, Taira M, Inase M (2004) Organization of prefrontal outflow toward frontal motor-related areas in macaque monkeys. Eur J Neurosci 19:3328-3342

Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:277-462

3920943 Wise SP (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1-19

  1. Brodmann K
    Vergleichende Lokalisationslehre der Grosshirnrinde, in ihren Prinzipien dargestellt auf Grund des Zellenbaues.
    Barth, Leipzig, 1909
  2. Vogt C, Vogt O
    Allgemeinere Ergebnisse unserer Hirnforschung.
    J Psychol Neurol 25:277-462, 1919
  3. Takada, M., Nambu, A., Hatanaka, N., Tachibana, Y., Miyachi, S., Taira, M., & Inase, M. (2004).
    Organization of prefrontal outflow toward frontal motor-related areas in macaque monkeys. The European journal of neuroscience, 19(12), 3328-42. [PubMed:15217388] [WorldCat] [DOI]
  4. Rizzolatti, G., & Luppino, G. (2001).
    The cortical motor system. Neuron, 31(6), 889-901. [PubMed:11580891] [WorldCat] [DOI]
  5. Barbas, H., & Pandya, D.N. (1987).
    Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. The Journal of comparative neurology, 256(2), 211-28. [PubMed:3558879] [WorldCat] [DOI]
  6. Hanna, C.R., Gatting, L.P., Boyd, K.A., Robb, K.A., & Jones, R.J. (2020).
    Evidencing the impact of cancer trials: insights from the 2014 UK Research Excellence Framework. Trials, 21(1), 486. [PubMed:32503612] [WorldCat] [DOI]

    Oreská, Ľ., Slobodová, L., Vajda, M., Kaplánová, A., Tirpáková, V., Cvečka, J., ..., & Sedliak, M. (2020).
    The effectiveness of two different multimodal training modes on physical performance in elderly. European journal of translational myology, 30(1), 8820. [PubMed:32499886] [PMC] [WorldCat] [DOI]

    McGrath, B.A., Wallace, S., Lynch, J., Bonvento, B., Coe, B., Owen, A., ..., & Roberson, D.W. (2020).
    Improving tracheostomy care in the United Kingdom: results of a guided quality improvement programme in 20 diverse hospitals. British journal of anaesthesia. [PubMed:32493580] [WorldCat] [DOI]

    Murthy, A., Ravi, P.R., Kathuria, H., & Malekar, S. (2020).
    Oral Bioavailability Enhancement of Raloxifene with Nanostructured Lipid Carriers. Nanomaterials (Basel, Switzerland), 10(6). [PubMed:32486508] [WorldCat] [DOI]

    Trivellone, V., Meier, M., Cara, C., Pollini Paltrinieri, L., Gugerli, F., Moretti, M., ..., & Collatz, J. (2020).
    Multiscale Determinants Drive Parasitization of Drosophilidae by Hymenopteran Parasitoids in Agricultural Landscapes. Insects, 11(6). [PubMed:32486131] [WorldCat] [DOI]

    Parreño-Madrigal, I.M., Díez-Fernández, A., Martínez-Vizcaíno, V., Visier-Alfonso, M.E., Garrido-Miguel, M., & Sánchez-López, M. (2020).
    Prevalence of Risk of Eating Disorders and its Association with Obesity and Fitness. International journal of sports medicine. [PubMed:32485780] [WorldCat] [DOI]

    Dundar, S., Bozoglan, A., Sahin, K., Balci, T.A., Kirtay, M., Bozoglan, M.Y., & Calisir, M. (2020).
    Does high fat diet effect the bone-implant connection? Bratislavske lekarske listy, 121(6), 450-454. [PubMed:32484711] [WorldCat] [DOI]

    Harsanyi, S., Ziaran, S., Bevizova, K., Varchulova Novakova, Z., Trebaticky, B., Bujdak, P., ..., & Danisovic, L. (2020).
    The prognostic value of E-cadherin and Ki-67 compared to standard histopathologic examination in non-muscle invasive bladder cancer. Bratislavske lekarske listy, 121(6), 444-449. [PubMed:32484710] [WorldCat] [DOI]

    Lorencova, M., Mitro, A., Jurikova, M., Galfiova, P., Mikusova, R., Krivosikova, L., ..., & Polak, S. (2020).
    Ependymal cells surface of human third brain ventricle by scanning electron microscopy. Bratislavske lekarske listy, 121(6), 437-443. [PubMed:32484709] [WorldCat] [DOI]

    Sihotsky, V., Berek, P., Kopolovets, I., Frankovicova, M., Stefanic, P., Kubikova, M., & Mucha, R. (2020).
    Cerebral monitoring during carotid endarterectomy using transcranial cerebral oximetry. Bratislavske lekarske listy, 121(6), 431-436. [PubMed:32484708] [WorldCat] [DOI]

    Jansakova, K., Kyselicova, K., Celusakova, H., Repiska, G., & Ostatnikova, D. (2020).
    The effect of saliva stimulation on the secretion of cortisol during stress and physiological conditions. Bratislavske lekarske listy, 121(6), 428-430. [PubMed:32484707] [WorldCat] [DOI]

    Yikilmaz, A.S., Akinci, S., Bakanay, S.M., & Dilek, I. (2020).
    Does the platelet‑to‑lymphocyte ratio have a prognostic effect in patients with myelodysplastic syndrome? Bratislavske lekarske listy, 121(6), 422-427. [PubMed:32484706] [WorldCat] [DOI]

    Pitel, L., Psenkova, P., Jones, C.C.G., & Zahumensky, J. (2020).
    Validation of the Slovak version of the Wijma Delivery Expectancy/Experience Questionnaire (W-DEQ), version A. Bratislavske lekarske listy, 121(6), 415-421. [PubMed:32484705] [WorldCat] [DOI]

    Kuzma, M., & Kliment, J. (2020).
    Metastasis-free survival as a new endpoint in castration- -resistant prostate cancer. Bratislavske lekarske listy, 121(6), 411-414. [PubMed:32484704] [WorldCat] [DOI]

    Koohsari, M., Ahangar, N., Mohammadi, E., Talebpour Amiri, F., & Shaki, F. (2020).
    Effects of tramadol administration on male reproductive toxicity in Wistar rats The role of oxidative stress, mitochondrial dysfunction, apoptosis-related gene expression, and nuclear factor kappa B signalling. Bratislavske lekarske listy, 121(6), 400-410. [PubMed:32484703] [WorldCat] [DOI]

    Grey, V., Klobusiakova, P., & Minks, E. (2020).
    Can repetitive transcranial magnetic stimulation of the visual cortex ameliorate the state of patients with visual snow? Bratislavske lekarske listy, 121(6), 395-399. [PubMed:32484702] [WorldCat] [DOI]

    Sarkozyova, N., Dragunova, J., Bukovcan, P., Ferancikova, N., Breza, J., Zilinska, Z., & Koller, J. (2020).
    Preparation and processing of human allogenic dermal matrix for utilization in reconstructive surgical procedures. Bratislavske lekarske listy, 121(6), 386-394. [PubMed:32484701] [WorldCat] [DOI]

    Hirjak, D., Dvoranova, B., Reyneke, J.P., Machon, M., & Neff, A. (2020).
    Condylar position and mandibular function after bilateral sagittal split osteotomy. Bratislavske lekarske listy, 121(6), 379-385. [PubMed:32484700] [WorldCat] [DOI]

    Nascimento, C., Urbano, A.C., Gameiro, A., Ferreira, J., Correia, J., & Ferreira, F. (2020).
    Serum PD-1/PD-L1 Levels, Tumor Expression and PD-L1 Somatic Mutations in HER2-Positive and Triple Negative Normal-Like Feline Mammary Carcinoma Subtypes. Cancers, 12(6). [PubMed:32481540] [WorldCat] [DOI]

    Bonaccorso, P., Bugarin, C., Buracchi, C., Fazio, G., Biondi, A., Lo Nigro, L., & Gaipa, G. (2020).
    Single-cell profiling of pediatric T-cell acute lymphoblastic leukemia: Impact of PTEN exon 7 mutation on PI3K/Akt and JAK-STAT signaling pathways. Cytometry. Part B, Clinical cytometry. [PubMed:32479694] [WorldCat] [DOI]
  7. Dum, R.P., & Strick, P.L. (1991).
    The origin of corticospinal projections from the premotor areas in the frontal lobe. The Journal of neuroscience : the official journal of the Society for Neuroscience, 11(3), 667-89. [PubMed:1705965] [WorldCat]
  8. Dum RP, Strick PL
    Motor areas in the frontal lobe of the primate.
    Physiol Behav 77: 677- 682, 2002
  9. He, S.Q., Dum, R.P., & Strick, P.L. (1995).
    Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. The Journal of neuroscience : the official journal of the Society for Neuroscience, 15(5 Pt 1), 3284-306. [PubMed:7538558] [WorldCat]
  10. Picard, N., & Strick, P.L. (1996).
    Motor areas of the medial wall: a review of their location and functional activation. Cerebral cortex (New York, N.Y. : 1991), 6(3), 342-53. [PubMed:8670662] [WorldCat] [DOI]
  11. Georgopoulos, A.P., Crutcher, M.D., & Schwartz, A.B. (1989).
    Cognitive spatial-motor processes. 3. Motor cortical prediction of movement direction during an instructed delay period. Experimental brain research, 75(1), 183-94. [PubMed:2707351] [WorldCat] [DOI]
  12. Hoshi, E., & Tanji, J. (2007).
    Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Current opinion in neurobiology, 17(2), 234-42. [PubMed:17317152] [WorldCat] [DOI]
  13. Kurata, K. (2007).
    Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys. Journal of neurophysiology, 98(4), 2008-21. [PubMed:17686916] [WorldCat] [DOI]
  14. Kurata, K. (2010).
    Conditional selection of contra- and ipsilateral forelimb movements by the dorsal premotor cortex in monkeys. Journal of neurophysiology, 103(1), 262-77. [PubMed:19889843] [WorldCat] [DOI]
  15. Wise, S.P. (1985).
    The primate premotor cortex: past, present, and preparatory. Annual review of neuroscience, 8, 1-19. [PubMed:3920943] [WorldCat] [DOI]
  16. 虫明 元、宮井一郎
    学習と脳:器用さを獲得する脳
    サイエンス社、2007
  17. Dum, R.P., & Strick, P.L. (1991).
    The origin of corticospinal projections from the premotor areas in the frontal lobe. The Journal of neuroscience : the official journal of the Society for Neuroscience, 11(3), 667-89. [PubMed:1705965] [WorldCat]
  18. Ridderinkhof, K.R., Ullsperger, M., Crone, E.A., & Nieuwenhuis, S. (2004).
    The role of the medial frontal cortex in cognitive control. Science (New York, N.Y.), 306(5695), 443-7. [PubMed:15486290] [WorldCat] [DOI]


(執筆者:虫明元、松坂義哉、嶋啓節、中島敏、奥山澄人  担当編集者:伊佐正)