「CRMP」の版間の差分

142 バイト追加 、 2017年6月4日 (日)
編集の要約なし
編集の要約なし
151行目: 151行目:
=== CRMP3  ===
=== CRMP3  ===


 CRMP3ノックアウトマウスの海馬において、樹状突起の長さや枝分かれの数が減少することが報告された<ref name="ref21"><pubmed> 17785607 </pubmed></ref>(表2)。また、CRMP3を過剰発現させると、樹状突起の長さや枝分かれの数が減少や、プリオンタンパク質の過剰発現による樹状突起の委縮を抑制する効果があることが報告された<ref name=Quach2011><pubmed>21339751</pubmed></ref>(表2) 。CRMP3のC末端が樹状突起形成に関与していることが示唆された<ref name=Quach2013><pubmed>23868973</pubmed></ref>
 CRMP3ノックアウトマウスの海馬において、樹状突起の長さや枝分かれの数が減少することが報告された<ref name="ref21"><pubmed> 17785607 </pubmed></ref>('''表2''')。また、CRMP3を過剰発現させると、樹状突起の長さや枝分かれの数が減少や、プリオンタンパク質の過剰発現による樹状突起の委縮を抑制する効果があることが報告された<ref name=Quach2011><pubmed>21339751</pubmed></ref>('''表2''') 。CRMP3のC末端が樹状突起形成に関与していることが示唆された<ref name=Quach2013><pubmed>23868973</pubmed></ref>。さらに、樹状突起スパインの形成も異常になることから、CRMP3は樹状突起の形成や樹状突起スパインの成熟に関与すると考えられている<ref name="ref21" />。また、CRMP3のその他の役割として、微小管の重合を阻害することにより神経突起の伸長を抑制することや、[[興奮毒性]]のある[[グルタミン酸]]で処理した神経細胞において、神経細胞が壊死する前の[[核凝縮]]時に[[カルパイン]]により切断されたCRMP3が核膜孔を通り核内に移行することで核凝縮に関わる可能性が示唆されている<ref name="ref22"><pubmed> 19559021 </pubmed></ref>。
。さらに、樹状突起スパインの形成も異常になることから、CRMP3は樹状突起の形成や樹状突起スパインの成熟に関与すると考えられている<ref name="ref21" />。また、CRMP3のその他の役割として、微小管の重合を阻害することにより神経突起の伸長を抑制することや、[[興奮毒性]]のある[[グルタミン酸]]で処理した神経細胞において、神経細胞が壊死する前の[[核凝縮]]時に[[カルパイン]]により切断されたCRMP3が核膜孔を通り核内に移行することで核凝縮に関わる可能性が示唆されている<ref name="ref22"><pubmed> 19559021 </pubmed></ref>。


=== CRMP4  ===
=== CRMP4  ===
158行目: 157行目:
 CRMP4をノックアウトすると、海馬[[CA1]]の[[錐体細胞]]の[[尖端樹状突起]]が二分枝化する表現型が増加し<ref name="ref23"><pubmed> 22234963 </pubmed></ref>、これはSema3Aのノックアウトマウスにおいても観察される<ref name="ref5" />。Sema3Aにより樹状突起の伸長や枝分かれが促進されるが、CRMP4ノックアウトマウスの培養海馬神経細胞においては、Sema3Aを加えてもこれらの促進が認められない<ref name="ref23" />。これらのことから、Sema3AシグナルがCRMP4に伝わり、海馬CA1における錐体細胞の尖端樹状突起の二分枝化を負に制御することが示唆されている<ref name="ref5" /><ref name="ref23" />。  
 CRMP4をノックアウトすると、海馬[[CA1]]の[[錐体細胞]]の[[尖端樹状突起]]が二分枝化する表現型が増加し<ref name="ref23"><pubmed> 22234963 </pubmed></ref>、これはSema3Aのノックアウトマウスにおいても観察される<ref name="ref5" />。Sema3Aにより樹状突起の伸長や枝分かれが促進されるが、CRMP4ノックアウトマウスの培養海馬神経細胞においては、Sema3Aを加えてもこれらの促進が認められない<ref name="ref23" />。これらのことから、Sema3AシグナルがCRMP4に伝わり、海馬CA1における錐体細胞の尖端樹状突起の二分枝化を負に制御することが示唆されている<ref name="ref5" /><ref name="ref23" />。  


 また、CRMP4を[[ノックダウン]]した大脳皮質神経細胞や海馬神経細胞において、樹状突起の分枝点の数が増加したことから、CRMP4は樹状突起の分枝を抑制する可能性が示唆されている<ref name="ref23" />(表2)。 (<u>編集部コメント:この記述は次の新しく加わった記述と重なっていると思います</u>)
 また、CRMP4を[[ノックダウン]]した大脳皮質神経細胞や海馬神経細胞において、樹状突起の分枝点の数が増加したことから、CRMP4は樹状突起の分枝を抑制する可能性が示唆されている<ref name="ref23" />('''表2''')。 (<u>編集部コメント:この記述は次の新しく加わった記述と重なっていると思います</u>)


 CRMP4 mRNAのマウス脳での詳細な発現分布、発現強度の生後変化が報告された <ref name=Tsutiya2012><pubmed>22816653</pubmed></ref>。視床下部 (AVPV) でのCRMP4の発現が、視床下部性差形成時期において雌雄で異なり、CRMP4はメス特異的にAVPVに存在するドーパミンニューロン (THニューロン) の数を調節することが報告された<ref name=Iwakura2013><pubmed>23420586</pubmed></ref>。CRMP4欠損仔マウスの嗅球において 、グルタミン酸受容体1 (GluR1) とGluR2の発現が増加すること、嗅球ニューロンの興奮が亢進すること、匂い識別能力が低下することが示された <ref name=Tsutiya2015><pubmed>26118640</pubmed></ref>(表2)。
 CRMP4 mRNAのマウス脳での詳細な発現分布、発現強度の生後変化が報告された <ref name=Tsutiya2012><pubmed>22816653</pubmed></ref>。視床下部 (AVPV) でのCRMP4の発現が、視床下部性差形成時期において雌雄で異なり、CRMP4はメス特異的にAVPVに存在するドーパミンニューロン (THニューロン) の数を調節することが報告された<ref name=Iwakura2013><pubmed>23420586</pubmed></ref>。CRMP4欠損仔マウスの嗅球において 、グルタミン酸受容体1 (GluR1) とGluR2の発現が増加すること、嗅球ニューロンの興奮が亢進すること、匂い識別能力が低下することが示された <ref name=Tsutiya2015><pubmed>26118640</pubmed></ref>('''表2''')。


 CRMP4欠損により生後初期仔マウス嗅球の僧帽細胞の樹状突起伸長が促進することが示された<ref name=Tsutiya2016><pubmed>26739921</pubmed></ref>
 CRMP4欠損により生後初期仔マウス嗅球の僧帽細胞の樹状突起伸長が促進することが示された<ref name=Tsutiya2016><pubmed>26739921</pubmed></ref>
(表2)。CRMP4の欠損およびノックダウンした神経細胞では樹状突起伸長が促進され、CRMP4を過剰発現した神経細胞では樹状突起伸長が抑制されたことから、CRMP4が樹状突起伸長に対して抑制的に機能することが示唆されている<ref name=Tsutiya2016><pubmed>26739921</pubmed></ref>。CRMP4欠損細胞では、軸索伸長と成長円錐形成の阻害が見られることが報告されている<ref name=Khazaei2014><pubmed>25225289</pubmed></ref>(表2) 。CRMP4は微小管重合とF-アクチンの束化を促進することにより、成長円錐形成を制御することが示唆されている<ref name=Khazaei2014><pubmed>25225289</pubmed></ref>。
('''表2''')。CRMP4の欠損およびノックダウンした神経細胞では樹状突起伸長が促進され、CRMP4を過剰発現した神経細胞では樹状突起伸長が抑制されたことから、CRMP4が樹状突起伸長に対して抑制的に機能することが示唆されている<ref name=Tsutiya2016><pubmed>26739921</pubmed></ref>。CRMP4欠損細胞では、軸索伸長と成長円錐形成の阻害が見られることが報告されている<ref name=Khazaei2014><pubmed>25225289</pubmed></ref>('''表2''') 。CRMP4は微小管重合とF-アクチンの束化を促進することにより、成長円錐形成を制御することが示唆されている<ref name=Khazaei2014><pubmed>25225289</pubmed></ref>。


=== CRMP5  ===
=== CRMP5  ===
171行目: 170行目:
 小脳のプルキンエ細胞において、CRMP5はシナプス可塑性に重要な役割を果たすことが報告されている<ref name="ref26"><pubmed> 21289187 </pubmed></ref>。プルキンエ細胞におけるCRMP5の発現は、出生後21日から28日において確認されており、CRMP5をノックアウトすると、プルキンエ細胞の細胞体のサイズや樹状突起の長さが減少する。さらに、[[平行線維]]とプルキンエ細胞間の[[興奮性シナプス伝達]]の[[長期抑圧]](LTD;long-term depression)の誘導が阻害されることが報告されている<ref name="ref26" />。プルキンエ細胞の樹状突起の形態制御にはBDNF-TrkBシグナルが関与する可能性が示唆されている<ref name="ref5" />。CRMP5ノックアウトマウスのプルキンエ細胞におけるBDNFの効果はまだ解析されていないが、ノックアウトマウスの培養海馬神経細胞において、BDNFにより誘導される樹状突起伸長の促進が減弱し、樹状突起の形態も損なわれる。さらに、TrkBによりCRMP5がチロシンリン酸化されることも明らかになり、BDNF-TrkBシグナルがCRMP5に伝わり、プルキンエ細胞の樹状突起の形態の制御に関与する可能性が示唆されている<ref name="ref5" /><ref name="ref26" />。  
 小脳のプルキンエ細胞において、CRMP5はシナプス可塑性に重要な役割を果たすことが報告されている<ref name="ref26"><pubmed> 21289187 </pubmed></ref>。プルキンエ細胞におけるCRMP5の発現は、出生後21日から28日において確認されており、CRMP5をノックアウトすると、プルキンエ細胞の細胞体のサイズや樹状突起の長さが減少する。さらに、[[平行線維]]とプルキンエ細胞間の[[興奮性シナプス伝達]]の[[長期抑圧]](LTD;long-term depression)の誘導が阻害されることが報告されている<ref name="ref26" />。プルキンエ細胞の樹状突起の形態制御にはBDNF-TrkBシグナルが関与する可能性が示唆されている<ref name="ref5" />。CRMP5ノックアウトマウスのプルキンエ細胞におけるBDNFの効果はまだ解析されていないが、ノックアウトマウスの培養海馬神経細胞において、BDNFにより誘導される樹状突起伸長の促進が減弱し、樹状突起の形態も損なわれる。さらに、TrkBによりCRMP5がチロシンリン酸化されることも明らかになり、BDNF-TrkBシグナルがCRMP5に伝わり、プルキンエ細胞の樹状突起の形態の制御に関与する可能性が示唆されている<ref name="ref5" /><ref name="ref26" />。  


 CRMP5は、ミエリン化されてないシュワン細胞で発現し、ミエリン化されたシュワン細胞では発現が低下することが報告されている<ref name=Camdessanché2012><pubmed>22437341</pubmed></ref> 。CRMP5ノックアウト細胞では、軸索とシュワン細胞の相互作用に異常が見られることから、CRMP5は軸索とシュワン細胞の相互作用を調節していることが示唆されている<ref name=Camdessanché2012><pubmed>22437341</pubmed></ref>(表2)。
 CRMP5は、ミエリン化されてないシュワン細胞で発現し、ミエリン化されたシュワン細胞では発現が低下することが報告されている<ref name=Camdessanché2012><pubmed>22437341</pubmed></ref> 。CRMP5ノックアウト細胞では、軸索とシュワン細胞の相互作用に異常が見られることから、CRMP5は軸索とシュワン細胞の相互作用を調節していることが示唆されている<ref name=Camdessanché2012><pubmed>22437341</pubmed></ref>('''表2''')。


== 疾患との関わり  ==
== 疾患との関わり  ==
183行目: 182行目:
 近年、アルツハイマー病以外に、CRMPsが[[統合失調症]]の発症にも関与することが示唆されており<ref name="ref5" />、これらの病態解明や治療法の開発を含め、さらなる研究が期待される。 <u>(この文章は旧版の最後の文章ですが、新しい部分が加わったため浮いています。消しても良いかと思います。)</u>
 近年、アルツハイマー病以外に、CRMPsが[[統合失調症]]の発症にも関与することが示唆されており<ref name="ref5" />、これらの病態解明や治療法の開発を含め、さらなる研究が期待される。 <u>(この文章は旧版の最後の文章ですが、新しい部分が加わったため浮いています。消しても良いかと思います。)</u>


 CRPMノックアウトマウスの解析において、神経発生に関する表現型だけでなく、行動異常や疾患に関連する表現型も観察されている(表2)<ref name=Nagai2016><pubmed>26795088</pubmed></ref> 。CRMP1ノックアウトマウスの行動解析により、高活動性、空間学習と記憶の障害、プレパルス抑制などの統合失調症に見られる症状に異常が見られた<ref name=Yamashita2013><pubmed>24409129</pubmed></ref>(表2)。
 CRPMノックアウトマウスの解析において、神経発生に関する表現型だけでなく、行動異常や疾患に関連する表現型も観察されている('''表2''')<ref name=Nagai2016><pubmed>26795088</pubmed></ref> 。CRMP1ノックアウトマウスの行動解析により、高活動性、空間学習と記憶の障害、プレパルス抑制などの統合失調症に見られる症状に異常が見られた<ref name=Yamashita2013><pubmed>24409129</pubmed></ref>('''表2''')。


 非活性型CRMP2 (CRMP2 S522A) のノックインマウスでは、中枢神経に障害を受けた際に起こる炎症と瘢痕形成に抑制効果が見られた<ref name=Nagai2016><pubmed>26795088</pubmed></ref>(表2) 。CRMP2ノックアウトマウスの包括的な行動解析により、高活動性、感情行動障害、社会性低下などの神経精神疾患に見られる症状に異常が見られた<ref name=Nakamura2016><pubmed>27582038</pubmed></ref>(表2)
 非活性型CRMP2 (CRMP2 S522A) のノックインマウスでは、中枢神経に障害を受けた際に起こる炎症と瘢痕形成に抑制効果が見られた<ref name=Nagai2016><pubmed>26795088</pubmed></ref>('''表2''') 。CRMP2ノックアウトマウスの包括的な行動解析により、高活動性、感情行動障害、社会性低下などの神経精神疾患に見られる症状に異常が見られた<ref name=Nakamura2016><pubmed>27582038</pubmed></ref>('''表2''')


 CRMP4ノックアウトマウスでは、中枢神経に障害を受けた際に起こる炎症と瘢痕形成に抑制効果が見られ、障害を受けた後の運動性の回復に改善が見られることが報告された<ref name=Nagai2015><pubmed>25652774</pubmed></ref>
 CRMP4ノックアウトマウスでは、中枢神経に障害を受けた際に起こる炎症と瘢痕形成に抑制効果が見られ、障害を受けた後の運動性の回復に改善が見られることが報告された<ref name=Nagai2015><pubmed>25652774</pubmed></ref>
(表2)。パーキンソン病モデルマウスにおいて、CRMP4の欠失はドーパミン作動性神経細胞死の遅延と炎症抑制を示すことが報告されている<ref name=Tonouchi2016><pubmed>26991935</pubmed></ref>(表2)。
('''表2''')。パーキンソン病モデルマウスにおいて、CRMP4の欠失はドーパミン作動性神経細胞死の遅延と炎症抑制を示すことが報告されている<ref name=Tonouchi2016><pubmed>26991935</pubmed></ref>('''表2''')。
{| class="wikitable"
{| class="wikitable"
|+表2. CRMPノックアウトマウスの表現型
|+表2. CRMPノックアウトマウスの表現型
233行目: 232行目:


=== その他の疾患 ===
=== その他の疾患 ===
 腫瘍組織におけるCRMPの発現の変化も報告されている(表3)(FEI et al., 2014)
 腫瘍組織におけるCRMPの発現の変化も報告されている('''表3''')<ref name=Tan2014><pubmed>24765134</pubmed></ref>


 肺がん細胞において、CRMP1の発現は増加し、通常より長いCRMP1のアイソフォーム(LCRMP1)は低下する<ref name=Pan2011><pubmed>21747164</pubmed></ref>
 肺がん細胞において、CRMP1の発現は増加し、通常より長いCRMP1のアイソフォーム(LCRMP1)は低下する<ref name=Pan2011><pubmed>21747164</pubmed></ref>
<ref name=Shih2001><pubmed>11562390</pubmed></ref>(表3)。
<ref name=Shih2001><pubmed>11562390</pubmed></ref>('''表3''')。


 CRMP2の発現は、大腸がん、肺がんで上昇し、乳がんで低下することが報告されている<ref name=Oliemuller2013><pubmed>23023514</pubmed></ref><ref name=Shimada2014><pubmed>23381229</pubmed></ref><ref name=Wu2008><pubmed>18203259</pubmed></ref>
 CRMP2の発現は、大腸がん、肺がんで上昇し、乳がんで低下することが報告されている<ref name=Oliemuller2013><pubmed>23023514</pubmed></ref><ref name=Shimada2014><pubmed>23381229</pubmed></ref><ref name=Wu2008><pubmed>18203259</pubmed></ref>
(表3)。乳がんにおいて、全体のCRMP2は低下しているが、核に移行したリン酸化CRMP2は増加しており、CRMP2のリン酸化は乳がんの進行に関与している可能性が示唆されている<ref name=Shimada2014><pubmed>23381229</pubmed></ref>(表3)
('''表3''')。乳がんにおいて、全体のCRMP2は低下しているが、核に移行したリン酸化CRMP2は増加しており、CRMP2のリン酸化は乳がんの進行に関与している可能性が示唆されている<ref name=Shimada2014><pubmed>23381229</pubmed></ref>('''表3''')


 CRMP4の発現は、前立腺がんで低下し、膵臓がんや神経芽腫では上昇していることが報告されている<ref name=Choi2005><pubmed>15933812</pubmed></ref><ref name=Gao2010><pubmed>20543870</pubmed></ref><ref name=Hiroshima2013><pubmed>22805864</pubmed></ref><ref name=Tan2013><pubmed>24011394</pubmed></ref>(表3)
 CRMP4の発現は、前立腺がんで低下し、膵臓がんや神経芽腫では上昇していることが報告されている<ref name=Choi2005><pubmed>15933812</pubmed></ref><ref name=Gao2010><pubmed>20543870</pubmed></ref><ref name=Hiroshima2013><pubmed>22805864</pubmed></ref><ref name=Tan2013><pubmed>24011394</pubmed></ref>('''表3''')


 CRMP5の発現は、神経内分泌肺がんや膠芽腫で上昇していることが報告されている<ref name=Liang2005><pubmed>15827123</pubmed></ref><ref name=Meyronet2008><pubmed>18769332</pubmed></ref>(表3)。がん組織における発現量の違いと病因の関係の理解やがん診断のためのバイオマーカーとしての利用などが期待される。
 CRMP5の発現は、神経内分泌肺がんや膠芽腫で上昇していることが報告されている<ref name=Liang2005><pubmed>15827123</pubmed></ref><ref name=Meyronet2008><pubmed>18769332</pubmed></ref>('''表3''')。がん組織における発現量の違いと病因の関係の理解やがん診断のためのバイオマーカーとしての利用などが期待される。


{| class="wikitable"
{| class="wikitable"