「CRMP」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
1行目: 1行目:
英:collapsin response mediator protein、英略語:CRMP  
英:collapsin response mediator protein、英略語:CRMP  


 CRMPs(collapsin response mediator proteins)は、軸索の反発性因子であるセマフォリン3A(Sema3A)の細胞内シグナルを伝達する分子として最初に同定された<ref name="ref1"><pubmed> 7637782 </pubmed></ref>。CRMPsは、細胞質タンパク質であり、これまでに5つのサブタイプ(CRMP1~5)が同定されている。これらの発現は主に発生時期の神経系に認められ、それぞれ特異的な発現分布と発現時期を示す<ref name="ref2"><pubmed> 14514985 </pubmed></ref>。CRMPsは線虫Unc-33の相同分子であり、Unc-33の突然変異は線虫の神経細胞において軸索の伸長やガイダンスの異常を引き起こす<ref name="ref3"><pubmed> 1468626 </pubmed></ref>。CRMPsはリン酸化タンパク質であり、リン酸化の制御は神経の発達や成熟に重要な役割を果たす<ref name="ref4"><pubmed> 17311006 </pubmed></ref><ref name="ref5"><pubmed> 22351471 </pubmed></ref>。また、初代培養神経細胞やノックアウトマウスを使った研究により、CRMPsの役割が明らかになってきており、極性・軸索形成や神経細胞の遊走、シナプス形成、シナプス可塑性、神経疾患といった様々な神経機能と病態に関与することが報告されている<ref name="ref4" /><ref name="ref5" />。  
 CRMPs(collapsin response mediator proteins)は、[[軸索]]の反発性因子である[[セマフォリン]]3A(Sema3A)の細胞内シグナルを伝達する分子として最初に同定された<ref name="ref1"><pubmed> 7637782 </pubmed></ref>。CRMPsは、細胞質タンパク質であり、これまでに5つのサブタイプ(CRMP1~5)が同定されている。これらの発現は主に発生時期の神経系に認められ、それぞれ特異的な発現分布と発現時期を示す<ref name="ref2"><pubmed> 14514985 </pubmed></ref>。CRMPsは線虫Unc-33の相同分子であり、Unc-33の突然変異は線虫の[[神経細胞]]において軸索の伸長やガイダンスの異常を引き起こす<ref name="ref3"><pubmed> 1468626 </pubmed></ref>。CRMPsはリン酸化タンパク質であり、リン酸化の制御は神経の発達や成熟に重要な役割を果たす<ref name="ref4"><pubmed> 17311006 </pubmed></ref><ref name="ref5"><pubmed> 22351471 </pubmed></ref>。また、初代培養神経細胞やノックアウトマウスを使った研究により、CRMPsの役割が明らかになってきており、極性・軸索形成や神経細胞の遊走、[[シナプス]]形成、[[シナプス可塑性]]、神経疾患といった様々な神経機能と病態に関与することが報告されている<ref name="ref4" /><ref name="ref5" />。  


== CRMPの発現  ==
== CRMPの発現  ==
7行目: 7行目:
=== 発生期の神経系  ===
=== 発生期の神経系  ===


[[Image:CRMP table1.jpg|thumb|right|250px|表1 CRMPs mRNAの発現時期<span class=]]" class="fck_mw_frame fck_mw_right" /&gt;  ラットにおけるCRMPsは、初期胚から有糸分裂後の神経細胞において強く発現し、生後1週間前後でピークに達し、その後は発現量が低下する。どのCRMPsも時空間的に調節された発現パターンを示す<ref name="ref2" />(表1) 。CRMP2は最も広範な発現パターンを示し、大多数の神経細胞の発生初期において発現する<ref name="ref6"><pubmed> 8815901 </pubmed></ref>。CRMP1とCRMP4は神経細胞の遊走後に発現し、胎生後期から出生後初期において最も発現量が高くなり、その後発現量が低下する<ref name="ref6" />。CRMP3の発現は、主に小脳の顆粒細胞に限られている<ref name="ref6" />。CRMP5の発現は新皮質、海馬、脊髄に顕著であり、有糸分裂後の神経細胞で発現する<ref name="ref7"><pubmed> 11549731 </pubmed></ref>。  
[[Image:CRMP table1.jpg|thumb|right|250px|表1 CRMPs mRNAの発現時期<span class=]]" class="fck_mw_frame fck_mw_right" /&gt;  ラットにおけるCRMPsは、初期胚から有糸分裂後の神経細胞において強く発現し、生後1週間前後でピークに達し、その後は発現量が低下する。どのCRMPsも時空間的に調節された発現パターンを示す<ref name="ref2" />(表1) 。CRMP2は最も広範な発現パターンを示し、大多数の神経細胞の発生初期において発現する<ref name="ref6"><pubmed> 8815901 </pubmed></ref>。CRMP1とCRMP4は神経細胞の遊走後に発現し、胎生後期から出生後初期において最も発現量が高くなり、その後発現量が低下する<ref name="ref6" />。CRMP3の発現は、主に[[小脳]]の[[顆粒細胞]]に限られている<ref name="ref6" />。CRMP5の発現は[[新皮質]]、[[海馬]]、[[脊髄]]に顕著であり、有糸分裂後の神経細胞で発現する<ref name="ref7"><pubmed> 11549731 </pubmed></ref>。  


=== 成体の神経系  ===
=== 成体の神経系  ===


 ラットの成体脳において,CRMPsは劇的に発現量が低下し,主に可塑性や神経新生を保持する領域(嗅球、海馬、小脳)で発現が認められる。CRMP1は主に小脳のプルキンエ細胞において発現する<ref name="ref6" />。CRMP2は成体脳においてはCRMPの中でも発現量が最も高く、嗅覚系や小脳、海馬で多く検出されている<ref name="ref2" /><ref name="ref6" />。CRMP3は小脳顆粒細胞や下オリーブ核、海馬歯状回で発現する<ref name="ref2" /><ref name="ref6" />。CRMP4は成体脳においてはCRMPsの中でも発現量が最も低く、嗅球や海馬、小脳の内顆粒層におけるわずかな細胞で発現が確認されている<ref name="ref2" /><ref name="ref8"><pubmed> 10931485 </pubmed></ref>。CRMP5は嗅球や嗅上皮における有糸分裂後の神経細胞、海馬歯状回で発現しており、また、末梢神経の軸索や感覚神経でも発現していることが報告されている<ref name="ref2" />。  
 ラットの成体脳において,CRMPsは劇的に発現量が低下し,主に可塑性や[[神経新生]]を保持する領域([[嗅球]]、海馬、小脳)で発現が認められる。CRMP1は主に小脳の[[プルキンエ細胞]]において発現する<ref name="ref6" />。CRMP2は成体脳においてはCRMPの中でも発現量が最も高く、嗅覚系や小脳、海馬で多く検出されている<ref name="ref2" /><ref name="ref6" />。CRMP3は小脳顆粒細胞や[[下オリーブ核]]、[[海馬歯状回]]で発現する<ref name="ref2" /><ref name="ref6" />。CRMP4は成体脳においてはCRMPsの中でも発現量が最も低く、嗅球や海馬、小脳の内顆粒層におけるわずかな細胞で発現が確認されている<ref name="ref2" /><ref name="ref8"><pubmed> 10931485 </pubmed></ref>。CRMP5は嗅球や嗅上皮における有糸分裂後の神経細胞、海馬歯状回で発現しており、また、[[末梢神経]]の軸索や[[感覚神経]]でも発現していることが報告されている<ref name="ref2" />。  


== CRMPの機能  ==
== CRMPの機能  ==
19行目: 19行目:
[[Image:CRMP_fig1.jpg|thumb|right|図1 CRMP1を介したシグナル伝達機構]]
[[Image:CRMP_fig1.jpg|thumb|right|図1 CRMP1を介したシグナル伝達機構]]


 CRMP1は、生後1日目のラット大脳皮質で強く発現する<ref name="ref6" />。ノックアウトマウスの解析から、CRMP1は大脳皮質神経細胞の遊走を制御することが報告されている<ref name="ref9"><pubmed> 17182786 </pubmed></ref>。CRMP1はFynの基質であり、リーリン(Reelin)が受容体(VLDLR/ApoER2)に結合すると、FynによりCRMP1とDab1がチロシンリン酸化され、これらが相乗的にシグナルのメディエーターとして働き、神経細胞の遊走を制御すると考えられている(図1)<ref name="ref9" />。また、Cdk5によるCRMP1のリン酸化が、Sema3Aによる樹状突起スパインの形成に関与することが報告されている(図1)<ref name="ref10"><pubmed> 18003833 </pubmed></ref>。  
 CRMP1は、生後1日目のラット[[大脳皮質]]で強く発現する<ref name="ref6" />。ノックアウトマウスの解析から、CRMP1は大脳皮質神経細胞の遊走を制御することが報告されている<ref name="ref9"><pubmed> 17182786 </pubmed></ref>。CRMP1は[[Fyn]]の基質であり、[[リーリン]](Reelin)が受容体(VLDLR/ApoER2)に結合すると、FynによりCRMP1と[[Dab1]]が[[チロシンリン酸化]]され、これらが相乗的にシグナルのメディエーターとして働き、神経細胞の遊走を制御すると考えられている(図1)<ref name="ref9" />。また、[[Cdk5]]によるCRMP1のリン酸化が、Sema3Aによる樹状突起スパインの形成に関与することが報告されている(図1)<ref name="ref10"><pubmed> 18003833 </pubmed></ref>。  


=== CRMP2  ===
=== CRMP2  ===
25行目: 25行目:
[[Image:CRMP_fig2.jpg|thumb|right|図2 CRMP2を介したシグナル伝達機構]][[Image:CRMP_fig3.jpg|thumb|right|図3 CRMP2はキネシン-1依存的軸索輸送に関与する]]
[[Image:CRMP_fig2.jpg|thumb|right|図2 CRMP2を介したシグナル伝達機構]][[Image:CRMP_fig3.jpg|thumb|right|図3 CRMP2はキネシン-1依存的軸索輸送に関与する]]


 CRMP2はCRMPsの中でも最初に同定され、最も解析が進んでいる分子である。CRMP2は、様々な結合パートナーと相互作用することにより、神経極性形成、微小管ダイナミクス、軸索の伸長・退縮、キネシン依存的軸索輸送、Ca2+ホメオスタシスなどに関与する<ref name="ref4" /><ref name="ref11"><pubmed> 21271304 </pubmed></ref>。  CRMP2は培養海馬神経細胞の伸長中の軸索に濃縮し、CRMP2の過剰発現により複数本の軸索(過剰軸索)が誘導される<ref name="ref12"><pubmed> 11477421 </pubmed></ref>。誘導された過剰軸索は、シナプトフィジン陽性のシナプス末端を持つことから、CRMP2は成熟した軸索の形成を誘導し、維持すると考えられる<ref name="ref4" /><ref name="ref12" />。さらに、過剰発現により樹状突起が軸索に変化したことから、過剰発現されたCRMP2が未成熟な神経突起だけでなく、樹状突起にも軸索のアイデンティティを与え得ることが示唆された<ref name="ref4" /><ref name="ref12" />。  CRMP2による軸索形成の分子メカニズムとして、微小管ダイナミクスの制御が報告されている。CRMP2はチューブリンヘテロ二量体と結合して微小管の重合を促進すること、また、この微小管重合活性がCRMP2により誘導される軸索伸長に必要であることが明らかになっている<ref name="ref13"><pubmed> 12134159 </pubmed></ref>。CRMP2のチューブリンへの結合はダイナミックに制御されており、Sema3A受容体であるニューロピリン-1(NP-1)やプレキシンA(PlexA)がRac1を活性化し、下流のキナーゼに影響を与え、最終的にGSK-3 betaが活性化され、CRMP2がリン酸化を受ける<ref name="ref11" /><ref name="ref14"><pubmed> 15652488 </pubmed></ref>。リン酸化されたCRMP2はチューブリンへのアフィニティーが弱くなり、軸索の退縮が促進される(図2)<ref name="ref14" />。逆に、ニューロトロフィン-3や脳由来神経成長因子(BDNF)によりGSK-3 betaが阻害され、CRMP2のリン酸化が抑制されることで、軸索伸長が促進する(図2)<ref name="ref14" />。また、CRMP2の結合タンパク質としてNumbが同定されており、CRMP2が軸索先端でNumbを介したL1のエンドサイトーシスおよびリサイクリングに関与する可能性が示唆されている<ref name="ref15"><pubmed> 12942088 </pubmed></ref>。RhoキナーゼがCRMP2をリン酸化することにより、CRMP2がNumbと結合できなくなり、軸索伸長が阻害されることも報告されている<ref name="ref16">'''有村奈利子、木村俊秀、藤井佳代、貝淵弘三<br>RhoキナーゼによるCRMP-2のリン酸化とその活性制御について<br>''脳21'':2004 </ref>。  CRMP2はキネシン依存性軸索輸送にも関与する。CRMP2がチューブリンヘテロ二量体もしくはSra-1をキネシン-1につなぎとめ、CRMP2/キネシン-1複合体がチューブリン二量体やSra-1/WAVE-1複合体の輸送を制御する(図3)<ref name="ref17"><pubmed> 16364893 </pubmed></ref><ref name="ref18"><pubmed> 16260607 </pubmed></ref>。また、TrkB/Slp1/Rab27複合体がCRMP2を介してキネシン-1に結合し、これらが順行性輸送されることが報告されている(図3)<ref name="ref19"><pubmed> 19460344 </pubmed></ref>。  CRMP2のCa2+ホメオスタシスへの関与としては、CRMP2が直接的にCaV2.2(N-type voltage-gated Ca2+ channel)と結合すると、プレシナプスの膜表面でのCaV2.2の局在が増加してCa2+の流入が増加することにより、神経伝達物質の放出が増加することが報告されている<ref name="ref20"><pubmed> 19755421 </pubmed></ref>。  
 CRMP2はCRMPsの中でも最初に同定され、最も解析が進んでいる分子である。CRMP2は、様々な結合パートナーと相互作用することにより、神経[[極性形成]]、[[微小管]]ダイナミクス、軸索の伸長・退縮、[[キネシン]]依存的軸索輸送、Ca2+[[ホメオスタシス]]などに関与する<ref name="ref4" /><ref name="ref11"><pubmed> 21271304 </pubmed></ref>。  CRMP2は培養海馬神経細胞の伸長中の軸索に濃縮し、CRMP2の過剰発現により複数本の軸索(過剰軸索)が誘導される<ref name="ref12"><pubmed> 11477421 </pubmed></ref>。誘導された過剰軸索は、[[シナプトフィジン]]陽性のシナプス末端を持つことから、CRMP2は成熟した軸索の形成を誘導し、維持すると考えられる<ref name="ref4" /><ref name="ref12" />。さらに、過剰発現により[[樹状突起]]が軸索に変化したことから、過剰発現されたCRMP2が未成熟な神経突起だけでなく、樹状突起にも軸索のアイデンティティを与え得ることが示唆された<ref name="ref4" /><ref name="ref12" />。  CRMP2による軸索形成の分子メカニズムとして、微小管ダイナミクスの制御が報告されている。CRMP2は[[チューブリン]]ヘテロ二量体と結合して微小管の重合を促進すること、また、この微小管重合活性がCRMP2により誘導される軸索伸長に必要であることが明らかになっている<ref name="ref13"><pubmed> 12134159 </pubmed></ref>。CRMP2のチューブリンへの結合はダイナミックに制御されており、Sema3A受容体である[[ニューロピリン]]-1(NP-1)や[[プレキシン]]A(PlexA)が[[Rac]]1を活性化し、下流の[[キナーゼ]]に影響を与え、最終的に[[GSK-3 beta]]が活性化され、CRMP2がリン酸化を受ける<ref name="ref11" /><ref name="ref14"><pubmed> 15652488 </pubmed></ref>。リン酸化されたCRMP2はチューブリンへのアフィニティーが弱くなり、軸索の退縮が促進される(図2)<ref name="ref14" />。逆に、[[ニューロトロフィン]]-3や[[脳由来神経成長因子]](BDNF)によりGSK-3 betaが阻害され、CRMP2のリン酸化が抑制されることで、軸索伸長が促進する(図2)<ref name="ref14" />。また、CRMP2の結合タンパク質として[[Numb]]が同定されており、CRMP2が軸索先端でNumbを介した[[L1]]の[[エンドサイトーシス]]およびリサイクリングに関与する可能性が示唆されている<ref name="ref15"><pubmed> 12942088 </pubmed></ref>。[[Rhoキナーゼ]]がCRMP2をリン酸化することにより、CRMP2がNumbと結合できなくなり、軸索伸長が阻害されることも報告されている<ref name="ref16">'''有村奈利子、木村俊秀、藤井佳代、貝淵弘三<br>RhoキナーゼによるCRMP-2のリン酸化とその活性制御について<br>''脳21'':2004 </ref>。  CRMP2はキネシン依存性軸索輸送にも関与する。CRMP2がチューブリンヘテロ二量体もしくは[[Sra-1]]をキネシン-1につなぎとめ、CRMP2/キネシン-1複合体がチューブリン二量体やSra-1/[[WAVE]]-1複合体の輸送を制御する(図3)<ref name="ref17"><pubmed> 16364893 </pubmed></ref><ref name="ref18"><pubmed> 16260607 </pubmed></ref>。また、[[Trk]]B/Slp1/[[Rab]]27複合体がCRMP2を介してキネシン-1に結合し、これらが順行性輸送されることが報告されている(図3)<ref name="ref19"><pubmed> 19460344 </pubmed></ref>。  CRMP2のCa2+ホメオスタシスへの関与としては、CRMP2が直接的に[[CaV2.2]](N-type voltage-gated Ca2+ channel)と結合すると、[[プレシナプス]]の膜表面でのCaV2.2の局在が増加してCa2+の流入が増加することにより、[[神経伝達物質]]の放出が増加することが報告されている<ref name="ref20"><pubmed> 19755421 </pubmed></ref>。  


=== CRMP3  ===
=== CRMP3  ===