「Förster共鳴エネルギー移動」の版間の差分

編集の要約なし
358行目: 358行目:
 ところが通常用いられる蛍光色素では5-10 nm程度の範囲まででFRETが観察されるのに対し、抗体自体が15 nmの大きさを持っている。また抗体のヒンジ部分で自由に折れ曲がる事が可能である。しかも2個の抗体を用いる。これらを考慮に入れると、目的とする分子の構造変化や相互作用が起こっていてもFRETが検出できない可能性がある。逆に仮にFRETが起きたとしても目的とするタンパク質が本当に相互作用しているかの実証とはならない。確実に言えるのは二つの抗原部位が数十nm以内に存在するという事実だけである。その為、タンパク質の構造変化を見るような実験には用いるのは難しい。また、免疫染色である為、固定したサンプルを用いなければならない。
 ところが通常用いられる蛍光色素では5-10 nm程度の範囲まででFRETが観察されるのに対し、抗体自体が15 nmの大きさを持っている。また抗体のヒンジ部分で自由に折れ曲がる事が可能である。しかも2個の抗体を用いる。これらを考慮に入れると、目的とする分子の構造変化や相互作用が起こっていてもFRETが検出できない可能性がある。逆に仮にFRETが起きたとしても目的とするタンパク質が本当に相互作用しているかの実証とはならない。確実に言えるのは二つの抗原部位が数十nm以内に存在するという事実だけである。その為、タンパク質の構造変化を見るような実験には用いるのは難しい。また、免疫染色である為、固定したサンプルを用いなければならない。


 しかし、最近intrabodyなどと呼ばれる希望するタンパク質と特異的に結合するタンパク質配列をデザインする方法が開発されつつある<ref name=ref23836932 ><pubmed> 23836932 </pubmed></ref>
 しかし、最近nanobody、FingRなどと呼ばれる希望するタンパク質と特異的に結合する小型のタンパク質配列をデザインする方法が開発されつつある<ref name=ref23836932 ><pubmed> 23836932 </pubmed></ref><ref name=ref23791193><pubmed> 23791193 </pubmed></ref><ref name=ref24005308 ><pubmed> 24005308 </pubmed></ref>。これを用いると、任意の分子に結合する、抗体よりも小型で、かつ遺伝子によってコードされる蛍光ラベルが可能となるであろう。このような方法を用いる事により、GFP融合タンパクによらない、内在性のタンパク質の相互作用を検出できる可能性がある。
<ref name=ref23791193><pubmed> 23791193 </pubmed></ref><ref name=ref24005308 ><pubmed> 24005308 </pubmed></ref>。これを用いると、任意の分子に結合する、抗体よりも小型で、かつ遺伝子によってコードされる蛍光ラベルが可能となるであろう。このような方法を用いる事により、GFP融合タンパクによらない、内在性のタンパク質の相互作用を検出できる可能性がある。


==神経科学分野への応用例 ==
==神経科学分野への応用例 ==