「Hodgkin-Huxley方程式」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
== 概略  ==
== 概略  ==


Alan Lloyd Hodgkin (1914-1998)とAndrew Fielding Huxley (1917-2012)は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出すとともに、興奮性細胞(神経細胞、心筋、骨格筋)の電気現象を定量的に扱う道を開いた<ref><pubmed> 12991237 </pubmed></ref>。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesと3人で、1963年のノーベル医学・生理学賞を受賞している。  
Alan Lloyd Hodgkin (1914-1998)とAndrew Fielding Huxley (1917-2012)は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出すとともに、興奮性細胞(神経細胞、心筋、骨格筋)の電気現象を定量的に扱う道を開いた<ref><pubmed> 12991237 </pubmed></ref><ref>Journal of Physiologyは、Hodgkin &amp; Huxley (1952)論文の60周年を記念して、2012年5月にオンライン版の特別号を出版している。Hogkin &amp; Huxleyおよび関係する論文は、このサイトからリンクされている。</ref> 。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesと3人で、1963年のノーベル医学・生理学賞を受賞している。  


HodgkinとHuxleyの業績の意義は次のように要約できる。  
HodgkinとHuxleyの業績の意義は次のように要約できる。  


#活動電位発生時に、ナトリウムイオン(Na<sup>+</sup>)とカリウムイオン(K<sup>+</sup>)が、脱分極により開く細胞膜の別々の通路を通ることを示した。この発見はイオンチャネルの存在を予測するものであり、その後のイオンチャネル研究の源となった。なお当時の論文では、イオンチャネル・チャネルという用語は用いられておらず、コンダクタンスという用語が使用されている。
#活動電位発生時に、ナトリウムイオン(Na<sup>+</sup>)とカリウムイオン(K<sup>+</sup>)が、脱分極により開く細胞膜の別々の通路を通ることを示した。この発見はイオンチャネルの存在を予測するものであり、その後のイオンチャネル研究の源となった。なお当時の論文では、イオンチャネル・チャネルという用語は用いられておらず、コンダクタンスという用語が使用されている。  
#Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルの開閉を実験的に測定し、開閉の非線形な動態を微分方程式を含む数式で表した。これらの式はまとめてHodgkin-Huxley (HH)方程式と呼ばれる。  
#Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルの開閉を実験的に測定し、開閉の非線形な動態を微分方程式を含む数式で表した。これらの式はまとめてHodgkin-Huxley (HH)方程式と呼ばれる。  
#Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。
#Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。
169行目: 169行目:
HHモデルは、比較的少ない数のパラメータで神経軸索の活動電位の発生と伝播を示す事に成功した。しかしその後、イオンチャネルの存在が明らかになり、いろいろな測定が可能になって来ると、HHモデルでは説明できない事が見つかって来た。  
HHモデルは、比較的少ない数のパラメータで神経軸索の活動電位の発生と伝播を示す事に成功した。しかしその後、イオンチャネルの存在が明らかになり、いろいろな測定が可能になって来ると、HHモデルでは説明できない事が見つかって来た。  


#ゲート電流  
#ゲート電流(gating current): チャネルタンパクの動きを反映すると考えられるゲート電流の電位依存性は、電流の電位依存性よりも過分極側にずれており、チャネルが最終的に開く過程は電位依存的ではないと推測された。&nbsp;
#Single-channel recording
#Single-channel recordin:&nbsp;Na<sup>+</sup>チャネルの開口時間は、HHモデルで予測されるよりも短く、脱分極から遅れてチャネルが開く場合が観察された。
#Markovモデル<br>
#Markov過程モデル:&nbsp;HHモデルよりもより複雑な過程を示すことの出来るMarkov過程モデルの方が、より詳細なチャネルの性質や、変異による性質の変化を表すことが出来た。 <br>


== 現在におけるHHモデル  ==
== 現在におけるHHモデル  ==


Journal of Physiologyは、Hodgkin &amp; Huxley (1952)論文の60周年を記念して、2012年5月にオンライン版の特別号を出版している。Hogkin &amp; Huxleyおよび関係する論文は、このサイトからリンクされている。
HHモデルは、チャネルの開閉特性を比較的少ないパラメータでかなり正確に表すことができる点で、今でも高く評価されている。現在広く行われている興奮性細胞(神経細胞、心筋細胞、骨格筋細胞)の電位シミュレーションでは、通常、HHモデルもしくはそれに類似のモデルが用いられる。Markov過程モデルの方がチャネル分子の動きと関係付けることが容易でありが、HHモデルの方が計算量の面で効率的である。<br>
 
<br>


== HH方程式を使ってみる  ==
== HH方程式を使ってみる  ==
66

回編集