「L1」の版間の差分

24 バイト追加 、 2015年9月2日 (水)
編集の要約なし
編集の要約なし
編集の要約なし
19行目: 19行目:
 [http://mouse.brain-map.org/experiment/show/80342072 L1]は発生段階の神経組織に強く発現し、成体になると発現量は減少する。さまざまな種類の[[神経細胞]]、[[シュワン細胞]]と[[オリゴデンドロサイト]]がL1を発現する。[[脊髄]][[後根神経節]]神経細胞では[[細胞体]]から[[神経突起]]先端部まで比較的均一に存在するが、[[海馬]]神経細胞のように極性化した細胞では、[[軸索]]遠位部から[[成長円錐]]に集積し、細胞体と[[樹状突起]]での発現は低い。したがって、神経細胞の極性化の解析において、 L1は軸索マーカーとして利用される。
 [http://mouse.brain-map.org/experiment/show/80342072 L1]は発生段階の神経組織に強く発現し、成体になると発現量は減少する。さまざまな種類の[[神経細胞]]、[[シュワン細胞]]と[[オリゴデンドロサイト]]がL1を発現する。[[脊髄]][[後根神経節]]神経細胞では[[細胞体]]から[[神経突起]]先端部まで比較的均一に存在するが、[[海馬]]神経細胞のように極性化した細胞では、[[軸索]]遠位部から[[成長円錐]]に集積し、細胞体と[[樹状突起]]での発現は低い。したがって、神経細胞の極性化の解析において、 L1は軸索マーカーとして利用される。


== 結合蛋白質 ==
== 結合タンパク質 ==


 L1細胞外領域は、隣接する細胞表面のL1細胞外領域と結合して細胞間接着を媒介する(ホモフィリック結合)。また、[[インテグリン]]、[[TAG1]]/アキソニン-1、F3/F11/[[コンタクティン]]などの接着分子とのヘテロフィリック結合も報告されている <ref><pubmed> 12957823 </pubmed></ref>。軸索ガイダンス分子[[セマフォリン]]の受容体である[[ニューロピリン]]-1と同一形質膜上でヘテロ2量体を形成する。L1細胞内領域と細胞骨格を連結する蛋白質として、[[アンキリン]]、[[ERM]](エズリン/ラディキシン/モエシン)、[[ダブルコルティン]]などが同定されている<ref><pubmed> 17189949 </pubmed></ref>。L1細胞内領域は、[[非受容体型チロシンキナーゼ]]Src、[[カゼインキナーゼ]]II、[[extracellular signal-regulated kinase]] 2 (Erk2)、[[p90rsk]]などの[[蛋白質リン酸化酵素]]と結合して[[リン酸化]]修飾を受ける。  
 L1細胞外領域は、隣接する細胞表面のL1細胞外領域と結合して細胞間接着を媒介する(ホモフィリック結合)。また、[[インテグリン]]、[[TAG1]]/アキソニン-1、F3/F11/[[コンタクティン]]などの接着分子とのヘテロフィリック結合も報告されている <ref><pubmed> 12957823 </pubmed></ref>。軸索ガイダンス分子[[セマフォリン]]の受容体である[[ニューロピリン]]-1と同一形質膜上でヘテロ2量体を形成する。L1細胞内領域と細胞骨格を連結するタンパク質として、[[アンキリン]]、[[ERM]](エズリン/ラディキシン/モエシン)、[[ダブルコルティン]]などが同定されている<ref><pubmed> 17189949 </pubmed></ref>。L1細胞内領域は、[[非受容体型チロシンキナーゼ]]Src、[[カゼインキナーゼ]]II、[[extracellular signal-regulated kinase]] 2 (Erk2)、[[p90rsk]]などの[[タンパク質リン酸化酵素]]と結合して[[リン酸化]]修飾を受ける。  




== 生理機能  ==
== 生理機能  ==


 ホモフィリック結合とヘテロフィリック結合により細胞間接着を媒介する。またL1の接着性および[[細胞骨格]]との連結は時空間的に制御されるため、L1は単なる静的な細胞間接着だけでなく、動的な細胞間相互作用(細胞移動など)にも関与する。神経系での具体的なL1の機能として、[[神経細胞移動]]の促進、軸索伸長の促進、軸索束形成の促進、[[ミエリン]]形成の促進、[[シナプス可塑性]]の制御などが報告されている<ref><pubmed> 17189949 </pubmed></ref>。また、L1とニューロピリン-1のヘテロ2量体はセマフォリン3A受容体として機能し、軸索の反発性ガイダンスを媒介する<ref><pubmed> 12456642 </pubmed></ref>。  L1の機能は、細胞内領域のリン酸化/脱リン酸化、エンドサイト−シス/[[エキソサイトーシス]]、細胞骨格との連結、[[プロテオリシス]]などによって制御されている。27番目のエクソンがコードするアミノ酸配列RSLEとそれに隣接するチロシン残基は、クラスリンアダプターAP2の認識配列YRSLを構成する。このチロシンがリン酸化された状態ではAP2に認識されないが、チロシンが脱リン酸化されたL1はAP2に認識されてクラスリン依存性エンドサイト−シス経路により細胞内へ取り込まれる<ref><pubmed> 12082080 </pubmed></ref>。取り込まれたL1は細胞内小胞輸送を経てエキソサイトーシスされる。L1のエンドサイト−シスとエキソサイトーシスは、細胞接着を空間的に制御して細胞移動に重要な役割を担う。L1は、アンキリンやERMなどの分子を介して[[アクチン]]骨格と結合し、神経突起が伸長するための駆動力を伝達する。蛋白質分解酵素[[ADAM]](a disintegrin and metalloprotease)はL1細胞外領域を細胞膜近傍で切断し、遊離したL1細胞外領域は隣接細胞あるいは同一細胞のインテグリンに結合して細胞移動を促進する。また、ADAMによるプロテオリシスに続き、[[γ-セクレターゼ]]が膜貫通領域を切断し、遊離したL1細胞内領域は[[wikipedia:JA:核|核]]内に移行して遺伝子の[[wikipedia:JA:転写|転写]]を制御する<ref><pubmed> 20237819 </pubmed></ref>。
 ホモフィリック結合とヘテロフィリック結合により細胞間接着を媒介する。またL1の接着性および[[細胞骨格]]との連結は時空間的に制御されるため、L1は単なる静的な細胞間接着だけでなく、動的な細胞間相互作用(細胞移動など)にも関与する。神経系での具体的なL1の機能として、[[神経細胞移動]]の促進、軸索伸長の促進、軸索束形成の促進、[[ミエリン]]形成の促進、[[シナプス可塑性]]の制御などが報告されている<ref><pubmed> 17189949 </pubmed></ref>。また、L1とニューロピリン-1のヘテロ2量体はセマフォリン3A受容体として機能し、軸索の反発性ガイダンスを媒介する<ref><pubmed> 12456642 </pubmed></ref>。  L1の機能は、細胞内領域のリン酸化/脱リン酸化、エンドサイト−シス/[[エキソサイトーシス]]、細胞骨格との連結、[[プロテオリシス]]などによって制御されている。27番目のエクソンがコードするアミノ酸配列RSLEとそれに隣接するチロシン残基は、クラスリンアダプターAP2の認識配列YRSLを構成する。このチロシンがリン酸化された状態ではAP2に認識されないが、チロシンが脱リン酸化されたL1はAP2に認識されてクラスリン依存性エンドサイト−シス経路により細胞内へ取り込まれる<ref><pubmed> 12082080 </pubmed></ref>。取り込まれたL1は細胞内小胞輸送を経てエキソサイトーシスされる。L1のエンドサイト−シスとエキソサイトーシスは、細胞接着を空間的に制御して細胞移動に重要な役割を担う。L1は、アンキリンやERMなどの分子を介して[[アクチン]]骨格と結合し、神経突起が伸長するための駆動力を伝達する。タンパク質分解酵素[[ADAM]](a disintegrin and metalloprotease)はL1細胞外領域を細胞膜近傍で切断し、遊離したL1細胞外領域は隣接細胞あるいは同一細胞のインテグリンに結合して細胞移動を促進する。また、ADAMによるプロテオリシスに続き、[[γ-セクレターゼ]]が膜貫通領域を切断し、遊離したL1細胞内領域は[[wikipedia:JA:核|核]]内に移行して遺伝子の[[wikipedia:JA:転写|転写]]を制御する<ref><pubmed> 20237819 </pubmed></ref>。


== 遺伝子変異  ==
== 遺伝子変異  ==