「Nogo」の版間の差分

639 バイト追加 、 2012年2月4日 (土)
編集の要約なし
編集の要約なし
編集の要約なし
41行目: 41行目:
 更に、Nogo受容体及び、p75ノックアウトマウスを用いて、脊髄損傷後の再生が評価された。しかしながらこれらのマウスで再生は認められなかった。従ってNogo受容体,&nbsp;p75受容体にシグナルが集約されるというモデル自体も再検討されるに至った。<br>  
 更に、Nogo受容体及び、p75ノックアウトマウスを用いて、脊髄損傷後の再生が評価された。しかしながらこれらのマウスで再生は認められなかった。従ってNogo受容体,&nbsp;p75受容体にシグナルが集約されるというモデル自体も再検討されるに至った。<br>  


=== PirBの発見  ===
=== PirBの発見とミエリン由来阻害因子の再検証 ===


 これらの結果から、Tessier-Lavigneのグループにより、Nogo66に対する別の受容体が報告された。それが、paired immunoglobulin-like receptor B(PirB)である。Atwalらは、Nogo-66に対する受容体をスクリーニングし、NgRと共に、leukocyte immunoglobulin (Ig)-like recep- tor B2 (LILRB2)を発見した。これは、マウスのPirBのオルソログに当たる。これらは、アミノ酸配列に50%のホモロジーしか共有していない。また、PirBは細胞外の免疫グロブリン様ドメインが4つしかないが、Nogo-66のみならず、MAG,OMgpもNgRと同様に結合することが示された。<ref><pubmed> 18988857  </pubmed></ref><br>  
 これらの結果から、Tessier-Lavigneのグループは、Nogo-66に別の受容体があるのではないかと考えた。Atwalらは、Nogo-66に対する受容体をスクリーニングし、NgRと共に、leukocyte immunoglobulin (Ig)-like recep- tor B2 (LILRB2)を発見した。これは、マウスのpaired immunoglobulin-like receptor B(PirB)のオルソログに当たる。これらの分子同士は、アミノ酸配列の50%しかホモロジーを持たない。また、PirBは細胞外の免疫グロブリン様ドメインが4つしかないが、LILRB2は6つである。しかし、PirBにはNogo-66のみならず、MAG,OMgpもNgRと同様に結合することが示された。<ref><pubmed> 18988857  </pubmed></ref><br>  


 現在PirBの想定されるシグナル伝達機構は、SHPと結合し、その脱リン酸化機構を介してTrkBのシグナルを制御するというものなど、現在報告が増えてきている。<ref>PMID: 21881600</ref><ref>PMID: 21364532</ref>ただ、このPirBのノックアウトマウスにおいても,その脊髄損傷モデル、脳挫傷モデルにおいて、その軸索の再生が促進されることはなかった<ref>20881122</ref><ref>21087927</ref>。今後は、更なる研究の成果の蓄積が必要だろう。
 現在PirBの想定されるシグナル伝達機構は、SHPと結合し、その脱リン酸化機構を介してTrkBのシグナルを制御するというものなど、現在報告が増えてきている。<ref>PMID: 21881600</ref><ref>PMID: 21364532</ref>ただ、このPirBのノックアウトマウスにおいても,その脊髄損傷モデル、脳挫傷モデルにおいて、その軸索の再生が促進されることはなかった<ref>20881122</ref><ref>21087927</ref>。今後は、更なる研究成果の蓄積が必要だろうと考えられる。


=== ミエリン由来阻害因子の再検証  ===
 更に、3つの主要なミエリン由来因子(MAG,Nogo,OMgp)はin vivoで再生阻害に働いているのか?これに関しても、最近否定的な結果が得られた。WIlliamらは、主要な再生阻害因子と考えられてきたNogo, MAG,OMgpのトリプルノックアウトマウスを作成して、軸索再生を詳細に脊髄損傷モデルにより検討したところ、全く再生が促進されないことが分かった。<ref>20547125</ref>このことにより、ミエリン由来あるいは、グリア瘢痕由来の別の再生阻害因子の存在を考えるべきである。我々は、第4のミエリン由来因子としてRGM(repulsive guidance molecule)という分子が重要であることを報告している。
 
 ミエリン由来因子はin vivoで再生阻害に働いているのか?これに関しても、最近否定的な結果が得られた。WIlliamらは、主要な再生阻害因子と考えられてきたNogo, MAG,OMgpのトリプルノックアウトマウスを作成して、軸索再生を詳細に脊髄損傷モデルにより検討したところ、全く再生が促進されないことが分かった。このことにより、ミエリン由来あるいは、グリア瘢痕由来の別の再生阻害因子の存在を考えるべきである。我々は、ここに、RGMという分子が重要であることを報告している。


<br>  
<br>  
55行目: 53行目:
== その他の機能  ==
== その他の機能  ==


==== <span style="font-weight: bold;"> 胎生期神経前駆細胞の放射状移動を制御</span><br>  ====
正常における機能も解析されている。その中では、


====  Critical periodの形成に関わり、成体の軸索の再編成を制御し、神経ネットワークの可塑性を制御<br>  ====
Critical periodの形成に関わり、成体の軸索の再編成を制御し、神経ネットワークの可塑性を制御すること


====  βセクレターゼ活性の制御によるAPPの切断を制御<br>  ====
胎生期神経前駆細胞の放射状移動を制御すること


<br>  
βセクレターゼ活性の制御によるAPPの切断を制御すること
 
が報告されている。明確な証明はないが、正常において、ミエリンや、ミエリン由来の軸索伸展阻害因子は、軸索の余計な芽生えや分枝が起こることを防ぐことにより、正常な軸索の状態を維持するのに役立っているのではないかという考えが、昔から提唱されてきたが、今のところそれを明確に証明する研究は報告されていないようである。<br>  


<br>  
<br>  
151

回編集