「Nogo」の版間の差分

1,728 バイト除去 、 2012年2月4日 (土)
編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
= 概要  =
= 概要  =


 Nogoは[http://www.google.co.jp/url?sa=t&rct=j&q=%E8%84%8A%E6%A4%8E%E5%8B%95%E7%89%A9&source=web&cd=1&ved=0CEEQFjAA&url=http%3A%2F%2Fja.wikipedia.org%2Fwiki%2F%25E8%2584%258A%25E6%25A4%258E%25E5%258B%2595%25E7%2589%25A9&ei=FQQpT6r-IYqKiALQs6mnCg&usg=AFQjCNEMyPXU2vKjYUi-j9mp-vbwpyQsDQ&sig2=xrvLW8tBJAIDL6XyHQnVLQ&cad=rja 脊椎動物]の[http://www.google.co.jp/url?sa=t&rct=j&q=%E4%B8%AD%E6%9E%A2%E7%A5%9E%E7%B5%8C&source=web&cd=1&ved=0CEMQFjAA&url=http%3A%2F%2Fja.wikipedia.org%2Fwiki%2F%25E4%25B8%25AD%25E6%259E%25A2%25E7%25A5%259E%25E7%25B5%258C%25E7%25B3%25BB&ei=KQQpT6jIOsKciAK_zKjFCg&usg=AFQjCNEucNIrcGtiIzEsSSwgWXtf2ZuPRQ&sig2=ofAyMolJHTpXkaybncm6Gw&cad=rja 中枢神経]の[http://kotobank.jp/word/%E8%BB%B8%E7%B4%A2 軸索]伸長の阻害効果をもち、軸索損傷後の再生を阻害する分子であると考えられている。Nogo-A蛋白内には2つの軸索伸張阻害作用を有する[http://ja.wikipedia.org/wiki/%E3%82%BF%E3%83%B3%E3%83%91%E3%82%AF%E8%B3%AA%E3%83%89%E3%83%A1%E3%82%A4%E3%83%B3 蛋白ドメイン]があり(Δ20とNogo-66)、軸索伸長阻害のみならず、軸索の先端の[http://www.google.co.jp/url?sa=t&rct=j&q=%E6%88%90%E9%95%B7%E5%86%86%E9%8C%90&source=web&cd=1&ved=0CCkQFjAA&url=http%3A%2F%2Fja.wikipedia.org%2Fwiki%2F%25E6%2588%2590%25E9%2595%25B7%25E5%2586%2586%25E9%258C%2590&ei=JQUpT9_pG8TUiALgkYDgCg&usg=AFQjCNFBZXVxTHKMsBRC7guZLsTRVXK2Ew&sig2=WTOTaoy2DdkSienrylh4cw&cad=rja 成長円錐]を虚脱させる作用を持っている。動物実験によりNogo-Aあるいはその下流のシグナルを阻害することにより、神経損傷時における神経軸索の再生を促すことが示されてきた。このことから軸索が損傷を受け、その再生ができないことにより重度の後遺障害が残る[http://ja.wikipedia.org/wiki/脊髄損傷 脊髄損傷]や[http://www.google.co.jp/url?sa=t&rct=j&q=%E5%A4%9A%E7%99%BA%E6%80%A7%E7%A1%AC%E5%8C%96%E7%97%87&source=web&cd=1&ved=0CEAQFjAA&url=http%3A%2F%2Fja.wikipedia.org%2Fwiki%2F%25E5%25A4%259A%25E7%2599%25BA%25E6%2580%25A7%25E7%25A1%25AC%25E5%258C%2596%25E7%2597%2587&ei=WgUpT6SiGqThiALw2Pm1Cg&usg=AFQjCNHBe0ifIb3nQo2DTvLeVqqeC157sA&sig2=pAi3Mua1pHqq2MFZ1peNjA&cad=rja 多発性硬化症]のような脱髄疾患における軸索再生治療への期待がかけられている。また、病態時のみならず、脳内の学習と[http://ja.wikipedia.org/wiki/記憶 記憶]のプロセスを強化する課程において重要な役割を果たすことが分かっている。 <br>  
 Nogoは脊椎動物の中枢神経の軸索伸長の阻害効果をもち、軸索損傷後の再生を阻害する分子であると考えられている。Nogo-A蛋白内には2つの軸索伸張阻害作用を有する蛋白ドメインがあり(Δ20とNogo-66)、軸索伸長阻害のみならず、軸索の先端の成長円錐を虚脱させる作用を持っている。動物実験によりNogo-Aあるいはその下流のシグナルを阻害することにより、神経損傷時における神経軸索の再生を促すことが示されてきた。このことから軸索が損傷を受け、その再生ができないことにより重度の後遺障害が残る脊髄損傷や多発性硬化症のような脱髄疾患における軸索再生治療への期待がかけられている。また、病態時のみならず、脳内の学習と記憶のプロセスを強化する課程において重要な役割を果たすことが分かっている。 <br>  


= 発見の歴史<br>  =
= 発見の歴史<br>  =
9行目: 9行目:
=== 研究の萌芽 <br>  ===
=== 研究の萌芽 <br>  ===


 今からおよそ80年前に、スペインの神経学者[http://ja.wikipedia.org/wiki/サンティアゴ・ラモン・イ・カハール Ramon y Cajal]が再生阻害の謎を解く重要なヒントを見いだす<ref>Ramon y Cajal, S. Degeneration and regeneration of the nervous system. Hafner, New York, 1928.</ref>。Cajalは、感覚を伝える[http://ja.wikipedia.org/wiki/後根 後根]神経という[http://ja.wikipedia.org/wiki/末梢神経 末梢神経]の軸索を切断し、その後の軸索の再生を観察した。再生しかけた軸索は、脊髄の中に侵入できず、再生できなかった。その後、Aguayoらは、脊髄の損傷による欠損部を末梢神経の周囲組織を移植することで、このグラフト内を軸索が再生する結果を得た。これらにより、神経細胞自体には再生する力があり、神経細胞を取り巻く環境が再生に適していないのではないかと考えられるようになった。<br> 1980年代、更に研究が進展し、ミエリンが神経突起の伸展を抑制することが報告された。そして、Schwabらは、ミエリンの中に再生を阻害している分子が存在していると考え、ミエリンの各フラクションに対する抗体を作成した。In vitroの実験により、IN-1抗体はミエリンの作用を中和し、220 kDaの糖蛋白に結合することが判明した。また、IN-1抗体を脊髄損傷させたラットに投与すると、軸索再生と運動機能の回復が認められた<ref><pubmed> 2300171</pubmed></ref>。これら一連の成果により、軸索再生阻害という概念が実在のものとして信じられるようになった。  
 今からおよそ80年前に、スペインの神経学者Ramon y Cajalが再生阻害の謎を解く重要なヒントを見いだす<ref>Ramon y Cajal, S. Degeneration and regeneration of the nervous system. Hafner, New York, 1928.</ref>。Cajalは、感覚を伝える後根神経という末梢神経の軸索を切断し、その後の軸索の再生を観察した。再生しかけた軸索は、脊髄の中に侵入できず、再生できなかった。その後、Aguayoらは、脊髄の損傷による欠損部を末梢神経の周囲組織を移植することで、このグラフト内を軸索が再生する結果を得た。これらにより、神経細胞自体には再生する力があり、神経細胞を取り巻く環境が再生に適していないのではないかと考えられるようになった。<br> 1980年代、更に研究が進展し、ミエリンが神経突起の伸展を抑制することが報告された。そして、Schwabらは、ミエリンの中に再生を阻害している分子が存在していると考え、ミエリンの各フラクションに対する抗体を作成した。In vitroの実験により、IN-1抗体はミエリンの作用を中和し、220 kDaの糖蛋白に結合することが判明した。また、IN-1抗体を脊髄損傷させたラットに投与すると、軸索再生と運動機能の回復が認められた<ref><pubmed> 2300171</pubmed></ref>。これら一連の成果により、軸索再生阻害という概念が実在のものとして信じられるようになった。  


=== Nogoとその受容体の発見<br>  ===
=== Nogoとその受容体の発見<br>  ===
151

回編集