「Rhoファミリー低分子量Gタンパク質」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
 
(2人の利用者による、間の4版が非表示)
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">篠原 亮太</font><br>
<font size="+1">篠原 亮太、[http://researchmap.jp/read0192882 古屋敷 智之]</font><br>
''京都大学 大学院医学研究科 医学専攻 医学研究科 医学専攻''<br>
<font size="+1">[http://researchmap.jp/read0192882 古屋敷 智之]</font><br>
''神戸大学大学院医学研究科・医学部 薬理学分野''<br>
''神戸大学大学院医学研究科・医学部 薬理学分野''<br>
DOI:<selfdoi /> 原稿受付日:2012年9月6日 原稿完成日:2012年11月5日<br>
DOI:<selfdoi /> 原稿受付日:2012年9月6日 原稿完成日:2012年11月5日<br>
63行目: 61行目:
== 歴史  ==
== 歴史  ==


 1985年にRhoファミリーの中で[[RhoA]]が新規のRas類似タンパク質として同定された<ref><pubmed> 3888408 </pubmed></ref>。続いて1989年にRas類似タンパク質として[[Rac1]]と[[Rac2]]が<ref><pubmed> 2674130 </pubmed></ref>、1990年に[[Cdc42]]が同定された<ref><pubmed> 2122236 </pubmed></ref>。Rhoファミリーの細胞内機能の解明には、Rhoサブクラスを特異的に[[ADPリボシル化]]して不活性化する[[wikipedia:ja:ボツリヌス菌|ボツリヌス菌]]由来の菌体外毒素[[C3]]が大いに貢献した<ref><pubmed> 3805032 </pubmed></ref> <ref><pubmed> 3141419 </pubmed></ref>。C3によるRhoサブクラスの不活性化は、[[PC-12細胞]]における[[神経突起]]様突起の伸展促進<ref><pubmed> 2106882 </pubmed></ref>、[[wikipedia:ja:血小板|血小板]][[wikipedia:ja:凝集|凝集]]の阻害<ref><pubmed> 1400407 </pubmed></ref>、[[wikipedia:ja:受精卵|受精卵]]の[[細胞分裂]]の阻害<ref><pubmed> 8081830 </pubmed></ref>などの細胞形態変化を誘導することから、細胞形態制御におけるRhoサブクラスの重要性が示唆された。その後、Rhoサブクラスを不活性化するC3や活性化型RhoA変異体を微小注入した[[wikipedia:ja:線維芽細胞|線維芽細胞]]において、RhoAの活性化が[[アクチン]]と[[ミオシン]]が束状に配列したストレスファイバー構造とこれがアンカーする[[細胞接着斑]]の誘導に不可欠であることが示された<ref><pubmed> 1643657 </pubmed></ref>。一方、線維芽細胞における[[Rac]]の活性化は、アクチン線維の網目構造からなる細胞辺縁の[[ラメリポディア]](葉状仮足)を誘導し、Cdc42の活性化はアクチン結合タンパク質で架橋されたアクチン束からなる[[フィロポディア]](糸状仮足)を誘導することが示された<ref><pubmed> 9438836 </pubmed></ref>。すなわち、Rho、Rac、Cdc42はアクチン再構築において特異的な作用を発揮することが明らかにされた。  
 1985年にRhoファミリーの中で[[RhoA]]が新規のRas類似タンパク質として同定された<ref><pubmed> 3888408 </pubmed></ref>。続いて1989年にRas類似タンパク質として[[Rac1]]と[[Rac2]]が<ref><pubmed> 2674130 </pubmed></ref>、1990年に[[Cdc42]]が同定された<ref><pubmed> 2122236 </pubmed></ref>。Rhoファミリーの細胞内機能の解明には、Rhoサブクラスを特異的に[[ADPリボシル化]]して不活性化する[[ボツリヌス菌]]由来の菌体外毒素[[ボツリヌス毒素#C3.E5.9E.8B|C3]]が大いに貢献した<ref><pubmed> 3805032 </pubmed></ref> <ref><pubmed> 3141419 </pubmed></ref>。C3によるRhoサブクラスの不活性化は、[[PC-12細胞]]における[[神経突起]]様突起の伸展促進<ref><pubmed> 2106882 </pubmed></ref>、[[wikipedia:ja:血小板|血小板]][[wikipedia:ja:凝集|凝集]]の阻害<ref><pubmed> 1400407 </pubmed></ref>、[[wikipedia:ja:受精卵|受精卵]]の[[細胞分裂]]の阻害<ref><pubmed> 8081830 </pubmed></ref>などの細胞形態変化を誘導することから、細胞形態制御におけるRhoサブクラスの重要性が示唆された。
 
 その後、Rhoサブクラスを不活性化するC3や活性化型RhoA変異体を微小注入した[[wikipedia:ja:線維芽細胞|線維芽細胞]]において、RhoAの活性化が[[アクチン]]と[[ミオシン]]が束状に配列したストレスファイバー構造とこれがアンカーする[[細胞接着斑]]の誘導に不可欠であることが示された<ref><pubmed> 1643657 </pubmed></ref>。一方、線維芽細胞における[[Rac]]の活性化は、アクチン線維の網目構造からなる細胞辺縁の[[ラメリポディア]](葉状仮足)を誘導し、Cdc42の活性化はアクチン結合タンパク質で架橋されたアクチン束からなる[[フィロポディア]](糸状仮足)を誘導することが示された<ref><pubmed> 9438836 </pubmed></ref>。すなわち、Rho、Rac、Cdc42はアクチン再構築において特異的な作用を発揮することが明らかにされた。


== ファミリー  ==
== ファミリー  ==
92行目: 92行目:
| [[Chp (GTPase)|RhoV]] (Chp)
| [[Chp (GTPase)|RhoV]] (Chp)
|-
|-
| rowspan="4" | [[Rac (GTPase)|Rac]]  
| rowspan="4" | [[Rac]]  
| rowspan="4" | [[ラメリポディア]]  
| rowspan="4" | [[ラメリポディア]]  
| [[Rac1]]
| [[Rac1]]
241行目: 241行目:
==== 損傷後の軸索再生  ====
==== 損傷後の軸索再生  ====


 [[損傷後の軸索再生]]は、]][[myelin-associated glycoprotein]]]] ([[MAG]])、[[Nogo-A]]、[[Chondroitin sulfate proteoglycans]] (CSPGs)、oligodendrocyte myelin glycoprotein (OMgp) などの[[ミエリン]]および[[オリゴデンドロサイト]]由来の軸索伸展抑制因子により阻害される。これら抑制因子の作用は、C3酵素によるRhoAの不活性化やY-27632によるROCK阻害により抑制される<ref name="ref89"><pubmed>17692017</pubmed></ref>。さらに、ROCK-II欠損マウス由来の[[後根神経節]]細胞は、[[Nogo-22]]やCSPGによる軸索伸展抑制作用が減弱していた<ref name="ref90"><pubmed>19955379</pubmed></ref>。これらの知見から、RhoA-ROCK経路の重要性が示唆されてきた。ROCK-II欠損マウスでは、脊髄損傷モデルにおける軸索損傷後の回復が促進することも報告されている<ref name="ref90" />。[[Mag|MAG]]や[[Nogo]]-AによるNogo受容体(NgR)活性化は、co-receptorの[[p75]]とRho GDIの結合を強化して、Rho GDIからのRhoA遊離を促進する<ref name="ref91"><pubmed>12692556</pubmed></ref>。遊離されたRhoAはRac/Rho GEFである[[Kalirin-9]]により活性化されると考えられている<ref name="ref92"><pubmed>18625710</pubmed></ref>。MAGによる軸索伸展抑制には、Rho-ROCKによるCRMP-2リン酸化の関与が示唆されている<ref name="ref93"><pubmed>16595691</pubmed></ref>。  
 損傷後の[[軸索再生]]は、[[myelin-associated glycoprotein]]]] ([[MAG]])、[[Nogo-A]]、[[Chondroitin sulfate proteoglycans]] (CSPGs)、oligodendrocyte myelin glycoprotein (OMgp) などの[[ミエリン]]および[[オリゴデンドロサイト]]由来の軸索伸展抑制因子により阻害される。これら抑制因子の作用は、C3酵素によるRhoAの不活性化やY-27632によるROCK阻害により抑制される<ref name="ref89"><pubmed>17692017</pubmed></ref>。さらに、ROCK-II欠損マウス由来の[[後根神経節]]細胞は、[[Nogo-22]]やCSPGによる軸索伸展抑制作用が減弱していた<ref name="ref90"><pubmed>19955379</pubmed></ref>。これらの知見から、RhoA-ROCK経路の重要性が示唆されてきた。ROCK-II欠損マウスでは、脊髄損傷モデルにおける軸索損傷後の回復が促進することも報告されている<ref name="ref90" />。[[Mag|MAG]]や[[Nogo]]-AによるNogo受容体(NgR)活性化は、co-receptorの[[p75]]とRho GDIの結合を強化して、Rho GDIからのRhoA遊離を促進する<ref name="ref91"><pubmed>12692556</pubmed></ref>。遊離されたRhoAはRac/Rho GEFである[[Kalirin-9]]により活性化されると考えられている<ref name="ref92"><pubmed>18625710</pubmed></ref>。MAGによる軸索伸展抑制には、Rho-ROCKによるCRMP-2リン酸化の関与が示唆されている<ref name="ref93"><pubmed>16595691</pubmed></ref>。


=== シナプス形成とシナプス可塑性  ===
=== シナプス形成とシナプス可塑性  ===
251行目: 251行目:
 スパインの形態はシナプス可塑性に伴って大きく変化し、大脳皮質や海馬の錐体細胞では、[[長期増強]](long-term potentiation)ではスパインの増大が、[[長期抑圧]](long-term depression)ではスパインの縮小が見られる<ref name="ref103"><pubmed>15190253</pubmed></ref> <ref name="ref104"><pubmed>15361876</pubmed></ref>。このスパインの形態変化はアクチン動態の変化を伴い、またアクチン細胞骨格依存的であることから、Rhoファミリーの関与が調べられてきた。二光子顕微鏡を用いた海馬スライスのイメージングから、グルタミン酸受容体の活性化がスパインでのCdc42とRhoAの活性化を誘導すること、活動依存的なスパインの増大にCdc42とRhoAが共に重要であることが示された<ref name="ref105"><pubmed>21423166</pubmed></ref>。Cdc42の活性化はスパインに長期的に留まるのに対し、RhoAの活性化はスパインから樹状突起へと拡散する。この活性化のパターンと合致し、Cdc42の活性化はスパインの増大の維持に、RhoAの活性化は初期のスパインの増大に重要であることが示唆されている<ref name="ref105" />。活動依存的なスパイン増大におけるCdc42、RhoAの作用には、それぞれPAKとROCKが関与していることが示唆されている<ref name="ref105" />。コフィリンとミオシン活性化はシナプス可塑性に重要であることから、現在、PAKによるコフィリン不活性化やROCKによるミオシン活性化がシナプス可塑性に関与する可能性が検討されている<ref name="ref96" />。Rhoサブクラスのエフェクターの一つ[[Citron]]は視床などの興奮性神経細胞の[[シナプス後肥厚部]]に集積し、[[PSD-95]]やNMDA型受容体と複合体を形成する<ref name="ref106"><pubmed>9870943</pubmed></ref>。Citron欠損マウスでは大脳皮質や海馬の錐体細胞のスパインの密度が減少するが<ref name="ref107"><pubmed>18309323</pubmed></ref>、その作用機序は不明である。  
 スパインの形態はシナプス可塑性に伴って大きく変化し、大脳皮質や海馬の錐体細胞では、[[長期増強]](long-term potentiation)ではスパインの増大が、[[長期抑圧]](long-term depression)ではスパインの縮小が見られる<ref name="ref103"><pubmed>15190253</pubmed></ref> <ref name="ref104"><pubmed>15361876</pubmed></ref>。このスパインの形態変化はアクチン動態の変化を伴い、またアクチン細胞骨格依存的であることから、Rhoファミリーの関与が調べられてきた。二光子顕微鏡を用いた海馬スライスのイメージングから、グルタミン酸受容体の活性化がスパインでのCdc42とRhoAの活性化を誘導すること、活動依存的なスパインの増大にCdc42とRhoAが共に重要であることが示された<ref name="ref105"><pubmed>21423166</pubmed></ref>。Cdc42の活性化はスパインに長期的に留まるのに対し、RhoAの活性化はスパインから樹状突起へと拡散する。この活性化のパターンと合致し、Cdc42の活性化はスパインの増大の維持に、RhoAの活性化は初期のスパインの増大に重要であることが示唆されている<ref name="ref105" />。活動依存的なスパイン増大におけるCdc42、RhoAの作用には、それぞれPAKとROCKが関与していることが示唆されている<ref name="ref105" />。コフィリンとミオシン活性化はシナプス可塑性に重要であることから、現在、PAKによるコフィリン不活性化やROCKによるミオシン活性化がシナプス可塑性に関与する可能性が検討されている<ref name="ref96" />。Rhoサブクラスのエフェクターの一つ[[Citron]]は視床などの興奮性神経細胞の[[シナプス後肥厚部]]に集積し、[[PSD-95]]やNMDA型受容体と複合体を形成する<ref name="ref106"><pubmed>9870943</pubmed></ref>。Citron欠損マウスでは大脳皮質や海馬の錐体細胞のスパインの密度が減少するが<ref name="ref107"><pubmed>18309323</pubmed></ref>、その作用機序は不明である。  


 また、Rac1やRacエフェクターのWAVE1の遺伝子欠損マウスでも海馬での長期増強や記憶学習の障害が認められることから<ref name="ref108"><pubmed>12578964</pubmed></ref> <ref name="ref109"><pubmed>17215396</pubmed></ref>、活動依存的なスパイン増大にRacが関わる可能性が考えられる。これに合致し、Rac GEFであるkalirin-7はNMDA受容体活性化によるスパイン増大と[[AMPA受容体]]の表面提示に重要であるが示されている。大脳皮質の錐体細胞では、NMDA受容体刺激は[[Α-CaMKII]]依存的にkalirin-7をリン酸化し、Racの活性化を誘導する<ref name="ref110"><pubmed>18031682</pubmed></ref>。NMDA受容体刺激によるTiam1のリン酸化と活性化も報告されている<ref name="ref72" />。β-PIXによるCdc42とRacの活性化も海馬錐体細胞のスパインの形成や形態制御に重要な働きを担うが、[[Β-PIX]]は足場タンパク質[[GIT]]を介してスパインに局在し、[[CaMKK]]-[[CaMKIα]]によるリン酸化により活性化される<ref name="ref111"><pubmed>18184567</pubmed></ref>。海馬初代培養神経細胞において、Rhoサブクラス特異的なGEFであるLfcも、NMDA受容体刺激によりスパインへ移行し、スパインの密度や形態の制御に関わると考えられている<ref name="ref112"><pubmed>15996550</pubmed></ref>。  
 また、Rac1やRacエフェクターのWAVE1の遺伝子欠損マウスでも海馬での長期増強や記憶学習の障害が認められることから<ref name="ref108"><pubmed>12578964</pubmed></ref> <ref name="ref109"><pubmed>17215396</pubmed></ref>、活動依存的なスパイン増大にRacが関わる可能性が考えられる。これに合致し、Rac GEFであるkalirin-7はNMDA受容体活性化によるスパイン増大と[[AMPA受容体]]の表面提示に重要であるが示されている。大脳皮質の錐体細胞では、NMDA受容体刺激は[[&alpha;CaMKII]]依存的にkalirin-7をリン酸化し、Racの活性化を誘導する<ref name="ref110"><pubmed>18031682</pubmed></ref>。NMDA受容体刺激によるTiam1のリン酸化と活性化も報告されている<ref name="ref72" />。β-PIXによるCdc42とRacの活性化も海馬錐体細胞のスパインの形成や形態制御に重要な働きを担うが、[[Β-PIX]]は足場タンパク質[[GIT]]を介してスパインに局在し、[[CaMKK]]-[[CaMKIα]]によるリン酸化により活性化される<ref name="ref111"><pubmed>18184567</pubmed></ref>。海馬初代培養神経細胞において、Rhoサブクラス特異的なGEFであるLfcも、NMDA受容体刺激によりスパインへ移行し、スパインの密度や形態の制御に関わると考えられている<ref name="ref112"><pubmed>15996550</pubmed></ref>。  


 エフリンによるスパイン形態の制御においてもRhoファミリーは重要な役割を担う。海馬初代培養神経細胞において、[[Ephrin-B1]]による[[EphB2]]刺激はRac GEFであるkalirin-7のスパインへの移行を促し、Rac-PAK経路を介してスパインを増大させることが示されている<ref name="ref113"><pubmed>12546821</pubmed></ref>。EphB活性化によるスパイン密度の増加にはRac GEFのTiam1の関与も示されている<ref name="ref114"><pubmed>17440041</pubmed></ref>。Cdc42とそのGEFである[[Intersectin-L]]は海馬初代培養神経細胞のスパイン形成に関わるが、Ephrin-B2刺激はintersectin-Lを介したCdc42活性化を誘導する<ref name="ref100" />。また、海馬の初代培養神経細胞やスライス培養細胞では、[[Ephrin]]-A1によるEphA4刺激はCdk5によるリン酸化を介してRho GEFのephexin1を活性化し、スパインの退縮とシナプス伝達の減弱を引き起こすことも示されている<ref name="ref115"><pubmed>17143272</pubmed></ref>。  
 エフリンによるスパイン形態の制御においてもRhoファミリーは重要な役割を担う。海馬初代培養神経細胞において、[[Ephrin-B1]]による[[EphB2]]刺激はRac GEFであるkalirin-7のスパインへの移行を促し、Rac-PAK経路を介してスパインを増大させることが示されている<ref name="ref113"><pubmed>12546821</pubmed></ref>。EphB活性化によるスパイン密度の増加にはRac GEFのTiam1の関与も示されている<ref name="ref114"><pubmed>17440041</pubmed></ref>。Cdc42とそのGEFである[[Intersectin-L]]は海馬初代培養神経細胞のスパイン形成に関わるが、Ephrin-B2刺激はintersectin-Lを介したCdc42活性化を誘導する<ref name="ref100" />。また、海馬の初代培養神経細胞やスライス培養細胞では、[[Ephrin]]-A1によるEphA4刺激はCdk5によるリン酸化を介してRho GEFのephexin1を活性化し、スパインの退縮とシナプス伝達の減弱を引き起こすことも示されている<ref name="ref115"><pubmed>17143272</pubmed></ref>。  


 [[知的障害]] (Intellectual Disability, ID) は、他の特徴的な身体所見、臨床経過および生化学的所見をもつ疾患によってIDを示す症候性IDと、知能以外の特徴的な症状を伴わない非症候性IDに大別される。非症候性IDの多くはスパインの形態異常を伴う<ref name="ref116"><pubmed>11998687</pubmed></ref>。これに合致して、非症候性[[精神遅滞]]の原因遺伝子として、[[Oligophrenin-1]]([[OPHN1]]; Rho GAP)、PAK3 (PAK3; Rac1/Cdc42エフェクター、Ser/Thr kinase)、[[ARHGEF6]] ([[ΑPIX]]/[[Cool-2]]; Rac, Cdc42 GEF) など、数多くのRhoシグナル関連遺伝子が同定されてきた。Oligophrenin-1は海馬錐体細胞の[[シナプス前部]]、[[シナプス後部]]に共に存在し、[[グルタミン酸]]作動性シナプス伝達の促進<ref name="ref117"><pubmed>19487570</pubmed></ref>や[[シナプス小胞]]の制御に関わることが報告されている<ref name="ref118"><pubmed>19481455</pubmed></ref>。  
 [[知的障害]] (Intellectual Disability, ID) は、他の特徴的な身体所見、臨床経過および生化学的所見をもつ疾患によってIDを示す症候性IDと、知能以外の特徴的な症状を伴わない非症候性IDに大別される。非症候性IDの多くはスパインの形態異常を伴う<ref name="ref116"><pubmed>11998687</pubmed></ref>。これに合致して、非症候性[[精神遅滞]]の原因遺伝子として、[[Oligophrenin-1]]([[OPHN1]]; Rho GAP)、PAK3 (PAK3; Rac1/Cdc42エフェクター、Ser/Thr kinase)、[[ARHGEF6]] ([[ΑPIX]]/[[Cool-2]]; Rac, Cdc42 GEF) など、数多くのRhoシグナル関連遺伝子が同定されてきた。Oligophrenin-1は海馬錐体細胞の[[シナプス前部]]、[[シナプス後部]]に共に存在し、[[グルタミン酸]]作動性シナプス伝達の促進<ref name="ref117"><pubmed>19487570</pubmed></ref>や[[シナプス小胞]]の制御に関わることが報告されている<ref name="ref118"><pubmed>19481455</pubmed></ref>。


== 参考文献  ==
== 参考文献  ==


<references />
<references />

案内メニュー