「Signal Transducers and Activator of Transcription 3」の版間の差分

提供: 脳科学辞典
移動先: 案内検索
(シグナル伝達兼転写活性化因子3へのリダイレクト)
(他の1人の利用者による、間の13版が非表示)
1行目: 1行目:
#redirect [[シグナル伝達兼転写活性化因子3]]
+
英:Signal Transducers and Activator of Transcription 3、英略語:STAT3
 +
 
 +
 シグナル伝達と転写活性化を行うことで、分化や生存、増殖などを調節するタンパク質の一群、Signal Transducers and Activator of Transcription (STAT) ファミリー分子の一つ。これまでSTATファミリー分子としては、STAT1、STAT2、STAT3、STAT4、STAT5A、STAT5B、STAT6の7種類が報告されている<ref><pubmed> 8608586 </pubmed></ref><ref><pubmed> 9418183 </pubmed></ref>。STAT3は非活性化状態時では細胞質に局在するが、活性化したJanus kinase(JAK)によってチロシンリン酸化を受け、核内移行し目的遺伝子を活性化する転写因子となる。この活性化経路はJAK/STAT経路と呼ばれている<ref><pubmed> 15225360 </pubmed></ref>。
 +
[[Image:STAT3kouzou.jpg|thumb|350px|'''図1.STAT3の構造'''<br>SH2ドメインは信号伝達鎖内のリン酸化チロシン残基を認識、結合する機能を持つ。その後、705番チロシンがリン酸化されることで活性化し、信号伝達鎖と乖離する。]]  
 +
[[Image:Saitokain.jpg|thumb|350px|'''図2.IL-6ファミリーサイトカイン受容体群'''<br>IL-6ファミリーサイトカインはそれぞれに特異的結合的結合鎖に結合し、信号伝達鎖を含んだ複合受容体の形成する。特異的結合鎖の中において、IL-6受容体(IL-6R)、IL-11R、CNTFRは可溶性の形態(sIL-6R、sIL-11R、sCNTFR)でも複合受容体形成を可能とする。IL-6、IL-11はgp130同士のホモ二量体化を、LIF、CNTF、CT-1はgp130/LIFRとのヘテロ二量体を誘導する。CT-1Rの存在は示唆されているものの、いまだ同定されていない。OSMはOSMRまたはLIFRとgp130とのヘテロ二量体化を誘導する。CT-1R]]
 +
[[Image:GFAP expression.jpg|thumb|350px|'''図3.IL-6ファミリーサイトカインシグナルによるGFAPの発現'''<br>IL-6ファミリーに属するほぼすべてのサイトカインでGFAPの転写が誘導されることが明らかになっている。]]
 +
[[Image:SOCS.jpg|thumb|350px|'''図4.SOCS3によるJAK/STAT3経路のフィードバック'''<br>発現したSOCS3は信号伝達鎖のチロシン残基を脱リン酸化することで、STAT3のSH2ドメインがチロシン残基に結合するのを阻害し、STAT3のリン酸化を防ぐ。STAT3は活性化し二量体化することができず、TNF-αのシグナルは抑制される。]]
 +
 
 +
== STAT3の構造と活性化のメカニズム ==
 +
 
 +
 まず、図1にSTAT3の構造を示す。STAT3は770アミノ酸残基から構成され、DNA結合ドメイン、SH2(src homology 2)ドメイン、リン酸化を受ける705番チロシンと727番セリンを有する。免疫系に作用するサイトカインとして同定されたIL-6ファミリーサイトカイン(interleukin-6(IL-6)、interleukin-11(IL-11)、oncostatin M、白血球遊走阻止因子Leukemia Inhibitory Factor(LIF)、毛様体神経栄養因子Ciliary Neurotrophic Factor(CNTF)などが含まれる<ref name="ref4"><pubmed> 11820727 </pubmed></ref>)は細胞膜上のサイトカイン受容体複合体中のサイトカイン特異的結合鎖と結合することで、膜たんぱく質glyco protein(gp130)を含む信号伝達鎖の二量体化がおこる(図2)。gp130はIL-6ファミリーサイトカイン共通かつ必須の信号伝達因子である。その後、信号伝達鎖の細胞内領域に会合するJAKが活性化され、信号伝達鎖の細胞内領域中のチロシン残基をリン酸化する。リン酸化されたチロシン残基に、転写因子STAT3が自身のSH2ドメインを介して会合、近接したJAKによりチロシンリン酸化(チロシン705)を受けることで活性化する<ref><pubmed> 9685167 </pubmed></ref>。チロシンリン酸化されたSTAT3分子はホモ二量体あるいは異なるSTATファミリー分子間でヘテロ二量体を形成し核へ移行した後、目的遺伝子の転写を制御する。JAK/STAT3経路はIL-6ファミリーやinsulin-like growth factor-1 (IGF-1) など複数のサイトカインや増殖因子の刺激により活性化することが知られている<ref name="ref1"><pubmed> 10486560 </pubmed></ref><ref name="ref2"><pubmed> 22772901 </pubmed></ref><ref name="ref3"><pubmed> 15998644 </pubmed></ref>。
 +
 
 +
== 神経系での働き①:脳内におけるアストロサイト分化誘導  ==
 +
 
 +
 IL-6ファミリーサイトカイン刺激によりSTAT3ホモ二量体は転写活性化因子としてグリア線維性酸性タンパク質glial fibrillary acidic protein (GFAP)のプロモーターに結合し、転写を促進する。GFAPはアストロサイトで特異的に発現するタンパク質であり、これまで神経幹細胞Neural stem cell (NSC) の培養系にIL-6ファミリーサイトカインを添加すると、JAK/STAT3経路を活性化することでアストロサイトへの分化が促進されることが明らかとなっている(図3)<ref name="ref4" /><ref name="ref1" />。また、STAT3をシグナル経路下流の転写因子とするIL-6ファミリーサイトカインとSmadをシグナル経路下流の転写因子とするbone morphogenetic protein 2 (BMP2)などのサイトカイン群(TGF-βスーパーファミリー)の両者は別々の受容体システムを介し、互いに協調的にクロストークして相乗的アストロサイト分化誘導<ref><pubmed> 10205054 </pubmed></ref>することが明らかにされている。転写活性化の補助的役割を果たす核内転写共役因子p300がサイトカイン刺激に応答して、自身のN末端側を二量体化したSTAT3と、自身のC末端側をヘテロオリゴマー化したsmad1と、それぞれ同時に結合しSTAT3/p300/smad1複合体が形成される。これにより二種類サイトカインシグナルが核内で統合され、目的遺伝子GFAPの相乗的発現が起こる。
 +
 
 +
== 神経系での働き②:神経幹細胞増殖制御 ==
 +
 
 +
 通常のSTAT3遺伝子欠損(ノックアウト, KO)マウスは発生の比較的初期に死に至るので、マウス脳内におけるSTAT3 KOの影響の解析は難しい<ref><pubmed> 9108058 </pubmed></ref>。そこで、神経系細胞特異的にSTAT3遺伝子を欠損(コンディショナルノックアウト, cKO)するトランスジェニックマウスを用いて解析した結果、STAT3 cKOマウスの海馬歯状回において、NSCの数が、野生型マウスに比べ減少していることが明らかになった。またニューロンに対する栄養因子活性を有するCNTFはIL-6ファミリーサイトカインの一因であり、gp130を介したシグナル伝達によりNSCの自己増殖を制御するという報告がなされている<ref><pubmed> 17311007 </pubmed></ref><ref><pubmed> 1542794 </pubmed></ref><ref><pubmed> 8390097 </pubmed></ref>。また、CNTF KOマウスの歯状回で、NSCの数が野生型マウスと比較して減少しているというSTAT3 cKOマウスと類似の結果が得られたことから、CNTFはサイトカイン受容体と結合し、下流のJAK/STAT3経路を活性化することで、NSCの自己増殖を制御することが示唆された><ref><pubmed> 19023034 </pubmed></ref>。
 +
 
 +
== 神経系での働き③:てんかん発作誘導性神経細胞死における神経保護作用 ==
 +
 
 +
 生体マウスにおいて興奮性アミノ酸の一種、カイニン酸kainic acid (KA)投与によるてんかん誘導に際し、抗てんかん薬として知られるcarbamazepine (CBZ)を投与すると、海馬のCA3領域においてニューロン死の割合がKA投与のみの個体に比べ、低いことが分かった。また、KA+CBZ投与マウスのCA3ニューロンにおいて、STAT3の発現レベルがmRNA、タンパク質どちら においても上昇しており、活性化を表すリン酸化STAT3の増加も見られている。加えて、神経保護タンパク質として知られているB-cell lymphoma-extra large (Bcl-xl) もまた、KA+CBZ投与マウスのCA3ニューロン内で発現レベルが高まっている上、STAT3とSTAT1のヘテロ二量体がBcl-xl遺伝子に直接結合し、発現制御を行う<ref><pubmed> 8390097 </pubmed></ref>という報告から、CBZのシグナルを受けてJAK/STAT3経路が活性化し、Bcl-xlなどの高アポトーシス分子の発現を誘導することで、てんかんによるニューロン死への保護効果が上昇することが示唆されている<ref name="ref2" />。炎症性サイトカインである腫瘍壊死因子tumor necrosis factor-α (TNF-α)は神経疾患、または炎症反応中の脳で、神経細胞毒性を持ち<ref><pubmed> 7507336 </pubmed></ref>、高濃度添加によりニューロン死が観察された。TNF-αのシグナルはgp130を介し、JAK/STAT3経路で伝達される<ref><pubmed> 12817006 </pubmed></ref>。対して、インスリン様成長因子insulin-like growth factor-1 (IGF-1)は頭部外傷など、脳内の炎症反応により多量に発現し、神経保護を行う<ref><pubmed> 9246719 </pubmed></ref><ref><pubmed> 14568359 </pubmed></ref>。そして、IGF-1はTNF-α添加により誘導されるニューロン死を阻害することが明らかになった。この神経保護効果は、JAK/STAT3経路がIGF-1により活性化し、STAT3とSTAT1のヘテロ二量体がサイトカイン抑制シグナル分子supressors of cytokine signaling 3 (SOCS-3)の転写を誘導し、発現したSOCS-3がJAKによって活性化された信号伝達鎖のリン酸化チロシン残基を脱リン酸化する、という負のフィードバック制御によりSTAT3の活性化を阻害、TNF-αシグナルを抑制し神経細胞死を阻害するためだと考えられる(図4)<ref name="ref3" /><ref><pubmed> 10070253 </pubmed></ref>。
 +
 
 +
 
 +
== 神経系での働き④:脊髄損傷時の反応性アストロサイト分化誘導 ==
 +
 
 +
 脊髄に損傷が起こると炎症反応が発生し、損傷部周辺の細胞は炎症性サイトカインを多量に分泌する。これらの刺激により損傷部周辺でGFAP強陽性となる反応性アストロサイトの出現が観察される<ref><pubmed> 9989494 </pubmed></ref>。反応性アストロサイトは集合しグリア瘢痕を形成する<ref><pubmed> 12578228 </pubmed></ref>。グリア瘢痕は損傷部の物理的な防壁となり、損傷部を外部環境刺激から守ることで中枢神経系を再統合する役割を持つ<ref><pubmed> 9724451 </pubmed></ref>。しかし、グリア瘢痕は、Chondroitin sulfate proteoglycans (CSPGs) などの軸索伸長阻害因子を分泌し、損傷部周辺ニューロンの軸索再伸長を阻害するため、神経軸索再生が抑制される<ref><pubmed> 12626698 </pubmed></ref>。軸索損傷を起こしたマウスへ、IL-6ファミリー受容体の機能を阻害する分子IL-6 receptor monoclonal antibody (MR16-1)を添加すると、損傷部の反応性アストロサイトの数が減少し、神経機能の回復が観察された。また、アストロサイト特異的にSTAT3遺伝子を欠損させたマウスに脊髄損傷を起こしても、反応性アストロサイトが出現せず、グリア瘢痕が形成できない<ref><pubmed> 18614693 </pubmed></ref>。これらのことからIL-6ファミリーサイトカイン刺激によるJAK/STAT3経路の活性化によって、反応性アストロサイトの分化が誘導されることが示唆された<ref name><pubmed> 15048924 </pubmed></ref>。
 +
 
 +
<br>
 +
 
 +
 
 +
== 参考文献  ==
 +
 
 +
<references />

2012年11月21日 (水) 10:44時点における版

英:Signal Transducers and Activator of Transcription 3、英略語:STAT3

 シグナル伝達と転写活性化を行うことで、分化や生存、増殖などを調節するタンパク質の一群、Signal Transducers and Activator of Transcription (STAT) ファミリー分子の一つ。これまでSTATファミリー分子としては、STAT1、STAT2、STAT3、STAT4、STAT5A、STAT5B、STAT6の7種類が報告されている[1][2]。STAT3は非活性化状態時では細胞質に局在するが、活性化したJanus kinase(JAK)によってチロシンリン酸化を受け、核内移行し目的遺伝子を活性化する転写因子となる。この活性化経路はJAK/STAT経路と呼ばれている[3]

図1.STAT3の構造
SH2ドメインは信号伝達鎖内のリン酸化チロシン残基を認識、結合する機能を持つ。その後、705番チロシンがリン酸化されることで活性化し、信号伝達鎖と乖離する。
図2.IL-6ファミリーサイトカイン受容体群
IL-6ファミリーサイトカインはそれぞれに特異的結合的結合鎖に結合し、信号伝達鎖を含んだ複合受容体の形成する。特異的結合鎖の中において、IL-6受容体(IL-6R)、IL-11R、CNTFRは可溶性の形態(sIL-6R、sIL-11R、sCNTFR)でも複合受容体形成を可能とする。IL-6、IL-11はgp130同士のホモ二量体化を、LIF、CNTF、CT-1はgp130/LIFRとのヘテロ二量体を誘導する。CT-1Rの存在は示唆されているものの、いまだ同定されていない。OSMはOSMRまたはLIFRとgp130とのヘテロ二量体化を誘導する。CT-1R
図3.IL-6ファミリーサイトカインシグナルによるGFAPの発現
IL-6ファミリーに属するほぼすべてのサイトカインでGFAPの転写が誘導されることが明らかになっている。
図4.SOCS3によるJAK/STAT3経路のフィードバック
発現したSOCS3は信号伝達鎖のチロシン残基を脱リン酸化することで、STAT3のSH2ドメインがチロシン残基に結合するのを阻害し、STAT3のリン酸化を防ぐ。STAT3は活性化し二量体化することができず、TNF-αのシグナルは抑制される。

STAT3の構造と活性化のメカニズム

 まず、図1にSTAT3の構造を示す。STAT3は770アミノ酸残基から構成され、DNA結合ドメイン、SH2(src homology 2)ドメイン、リン酸化を受ける705番チロシンと727番セリンを有する。免疫系に作用するサイトカインとして同定されたIL-6ファミリーサイトカイン(interleukin-6(IL-6)、interleukin-11(IL-11)、oncostatin M、白血球遊走阻止因子Leukemia Inhibitory Factor(LIF)、毛様体神経栄養因子Ciliary Neurotrophic Factor(CNTF)などが含まれる[4])は細胞膜上のサイトカイン受容体複合体中のサイトカイン特異的結合鎖と結合することで、膜たんぱく質glyco protein(gp130)を含む信号伝達鎖の二量体化がおこる(図2)。gp130はIL-6ファミリーサイトカイン共通かつ必須の信号伝達因子である。その後、信号伝達鎖の細胞内領域に会合するJAKが活性化され、信号伝達鎖の細胞内領域中のチロシン残基をリン酸化する。リン酸化されたチロシン残基に、転写因子STAT3が自身のSH2ドメインを介して会合、近接したJAKによりチロシンリン酸化(チロシン705)を受けることで活性化する[5]。チロシンリン酸化されたSTAT3分子はホモ二量体あるいは異なるSTATファミリー分子間でヘテロ二量体を形成し核へ移行した後、目的遺伝子の転写を制御する。JAK/STAT3経路はIL-6ファミリーやinsulin-like growth factor-1 (IGF-1) など複数のサイトカインや増殖因子の刺激により活性化することが知られている[6][7][8]

神経系での働き①:脳内におけるアストロサイト分化誘導

 IL-6ファミリーサイトカイン刺激によりSTAT3ホモ二量体は転写活性化因子としてグリア線維性酸性タンパク質glial fibrillary acidic protein (GFAP)のプロモーターに結合し、転写を促進する。GFAPはアストロサイトで特異的に発現するタンパク質であり、これまで神経幹細胞Neural stem cell (NSC) の培養系にIL-6ファミリーサイトカインを添加すると、JAK/STAT3経路を活性化することでアストロサイトへの分化が促進されることが明らかとなっている(図3)[4][6]。また、STAT3をシグナル経路下流の転写因子とするIL-6ファミリーサイトカインとSmadをシグナル経路下流の転写因子とするbone morphogenetic protein 2 (BMP2)などのサイトカイン群(TGF-βスーパーファミリー)の両者は別々の受容体システムを介し、互いに協調的にクロストークして相乗的アストロサイト分化誘導[9]することが明らかにされている。転写活性化の補助的役割を果たす核内転写共役因子p300がサイトカイン刺激に応答して、自身のN末端側を二量体化したSTAT3と、自身のC末端側をヘテロオリゴマー化したsmad1と、それぞれ同時に結合しSTAT3/p300/smad1複合体が形成される。これにより二種類サイトカインシグナルが核内で統合され、目的遺伝子GFAPの相乗的発現が起こる。

神経系での働き②:神経幹細胞増殖制御

 通常のSTAT3遺伝子欠損(ノックアウト, KO)マウスは発生の比較的初期に死に至るので、マウス脳内におけるSTAT3 KOの影響の解析は難しい[10]。そこで、神経系細胞特異的にSTAT3遺伝子を欠損(コンディショナルノックアウト, cKO)するトランスジェニックマウスを用いて解析した結果、STAT3 cKOマウスの海馬歯状回において、NSCの数が、野生型マウスに比べ減少していることが明らかになった。またニューロンに対する栄養因子活性を有するCNTFはIL-6ファミリーサイトカインの一因であり、gp130を介したシグナル伝達によりNSCの自己増殖を制御するという報告がなされている[11][12][13]。また、CNTF KOマウスの歯状回で、NSCの数が野生型マウスと比較して減少しているというSTAT3 cKOマウスと類似の結果が得られたことから、CNTFはサイトカイン受容体と結合し、下流のJAK/STAT3経路を活性化することで、NSCの自己増殖を制御することが示唆された>[14]

神経系での働き③:てんかん発作誘導性神経細胞死における神経保護作用

 生体マウスにおいて興奮性アミノ酸の一種、カイニン酸kainic acid (KA)投与によるてんかん誘導に際し、抗てんかん薬として知られるcarbamazepine (CBZ)を投与すると、海馬のCA3領域においてニューロン死の割合がKA投与のみの個体に比べ、低いことが分かった。また、KA+CBZ投与マウスのCA3ニューロンにおいて、STAT3の発現レベルがmRNA、タンパク質どちら においても上昇しており、活性化を表すリン酸化STAT3の増加も見られている。加えて、神経保護タンパク質として知られているB-cell lymphoma-extra large (Bcl-xl) もまた、KA+CBZ投与マウスのCA3ニューロン内で発現レベルが高まっている上、STAT3とSTAT1のヘテロ二量体がBcl-xl遺伝子に直接結合し、発現制御を行う[15]という報告から、CBZのシグナルを受けてJAK/STAT3経路が活性化し、Bcl-xlなどの高アポトーシス分子の発現を誘導することで、てんかんによるニューロン死への保護効果が上昇することが示唆されている[7]。炎症性サイトカインである腫瘍壊死因子tumor necrosis factor-α (TNF-α)は神経疾患、または炎症反応中の脳で、神経細胞毒性を持ち[16]、高濃度添加によりニューロン死が観察された。TNF-αのシグナルはgp130を介し、JAK/STAT3経路で伝達される[17]。対して、インスリン様成長因子insulin-like growth factor-1 (IGF-1)は頭部外傷など、脳内の炎症反応により多量に発現し、神経保護を行う[18][19]。そして、IGF-1はTNF-α添加により誘導されるニューロン死を阻害することが明らかになった。この神経保護効果は、JAK/STAT3経路がIGF-1により活性化し、STAT3とSTAT1のヘテロ二量体がサイトカイン抑制シグナル分子supressors of cytokine signaling 3 (SOCS-3)の転写を誘導し、発現したSOCS-3がJAKによって活性化された信号伝達鎖のリン酸化チロシン残基を脱リン酸化する、という負のフィードバック制御によりSTAT3の活性化を阻害、TNF-αシグナルを抑制し神経細胞死を阻害するためだと考えられる(図4)[8][20]


神経系での働き④:脊髄損傷時の反応性アストロサイト分化誘導

 脊髄に損傷が起こると炎症反応が発生し、損傷部周辺の細胞は炎症性サイトカインを多量に分泌する。これらの刺激により損傷部周辺でGFAP強陽性となる反応性アストロサイトの出現が観察される[21]。反応性アストロサイトは集合しグリア瘢痕を形成する[22]。グリア瘢痕は損傷部の物理的な防壁となり、損傷部を外部環境刺激から守ることで中枢神経系を再統合する役割を持つ[23]。しかし、グリア瘢痕は、Chondroitin sulfate proteoglycans (CSPGs) などの軸索伸長阻害因子を分泌し、損傷部周辺ニューロンの軸索再伸長を阻害するため、神経軸索再生が抑制される[24]。軸索損傷を起こしたマウスへ、IL-6ファミリー受容体の機能を阻害する分子IL-6 receptor monoclonal antibody (MR16-1)を添加すると、損傷部の反応性アストロサイトの数が減少し、神経機能の回復が観察された。また、アストロサイト特異的にSTAT3遺伝子を欠損させたマウスに脊髄損傷を起こしても、反応性アストロサイトが出現せず、グリア瘢痕が形成できない[25]。これらのことからIL-6ファミリーサイトカイン刺激によるJAK/STAT3経路の活性化によって、反応性アストロサイトの分化が誘導されることが示唆された[26]



参考文献

  1. J N Ihle

    STATs: signal transducers and activators of transcription.
    Cell: 1996, 84(3);331-4 [PubMed:8608586] [WorldCat.org]

  2. J J O'Shea, L D Notarangelo, J A Johnston, F Candotti

    Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency.
    J. Clin. Immunol.: 1997, 17(6);431-47 [PubMed:9418183] [WorldCat.org]

  3. Lionel B Ivashkiv, Xiaoyu Hu

    Signaling by STATs.
    Arthritis Res. Ther.: 2004, 6(4);159-68 [PubMed:15225360] [WorldCat.org] [DOI]

  4. 4.0 4.1 E Gyotoku, E Morita, Y Kameyoshi, T Hiragun, S Yamamoto, M Hide

    The IL-6 family cytokines, interleukin-6, interleukin-11, oncostatin M, and leukemia inhibitory factor, enhance mast cell growth through fibroblast-dependent pathway in mice.
    Arch. Dermatol. Res.: 2001, 293(10);508-14 [PubMed:11820727] [WorldCat.org]

  5. K Nakashima, T Taga

    gp130 and the IL-6 family of cytokines: signaling mechanisms and thrombopoietic activities.
    Semin. Hematol.: 1998, 35(3);210-21 [PubMed:9685167] [WorldCat.org]

  6. 6.0 6.1 K Nakashima, M Yanagisawa, H Arakawa, T Taga

    Astrocyte differentiation mediated by LIF in cooperation with BMP2.
    FEBS Lett.: 1999, 457(1);43-6 [PubMed:10486560] [WorldCat.org]

  7. 7.0 7.1 Hae Jeong Park, Su Kang Kim, Joo-Ho Chung, Jong Woo Kim

    Protective effect of carbamazepine on kainic acid-induced neuronal cell death through activation of signal transducer and activator of transcription-3.
    J. Mol. Neurosci.: 2013, 49(1);172-81 [PubMed:22772901] [WorldCat.org] [DOI]

  8. 8.0 8.1 Ajay Yadav, Anjana Kalita, Shivani Dhillon, Kakoli Banerjee

    JAK/STAT3 pathway is involved in survival of neurons in response to insulin-like growth factor and negatively regulated by suppressor of cytokine signaling-3.
    J. Biol. Chem.: 2005, 280(36);31830-40 [PubMed:15998644] [WorldCat.org] [DOI]

  9. K Nakashima, M Yanagisawa, H Arakawa, N Kimura, T Hisatsune, M Kawabata, K Miyazono, T Taga

    Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300.
    Science: 1999, 284(5413);479-82 [PubMed:10205054] [WorldCat.org]

  10. K Takeda, K Noguchi, W Shi, T Tanaka, M Matsumoto, N Yoshida, T Kishimoto, S Akira

    Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality.
    Proc. Natl. Acad. Sci. U.S.A.: 1997, 94(8);3801-4 [PubMed:9108058] [WorldCat.org]

  11. Sylvian Bauer, Bradley J Kerr, Paul H Patterson

    The neuropoietic cytokine family in development, plasticity, disease and injury.
    Nat. Rev. Neurosci.: 2007, 8(3);221-32 [PubMed:17311007] [WorldCat.org] [DOI]

  12. D P Gearing, M R Comeau, D J Friend, S D Gimpel, C J Thut, J McGourty, K K Brasher, J A King, S Gillis, B Mosley

    The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor.
    Science: 1992, 255(5050);1434-7 [PubMed:1542794] [WorldCat.org]

  13. S Davis, T H Aldrich, N Stahl, L Pan, T Taga, T Kishimoto, N Y Ip, G D Yancopoulos

    LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor.
    Science: 1993, 260(5115);1805-8 [PubMed:8390097] [WorldCat.org]

  14. Stephan Müller, Baby P S Chakrapani, Herbert Schwegler, Hans-Dieter Hofmann, Matthias Kirsch

    Neurogenesis in the dentate gyrus depends on ciliary neurotrophic factor and signal transducer and activator of transcription 3 signaling.
    Stem Cells: 2009, 27(2);431-41 [PubMed:19023034] [WorldCat.org] [DOI]

  15. S Davis, T H Aldrich, N Stahl, L Pan, T Taga, T Kishimoto, N Y Ip, G D Yancopoulos

    LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor.
    Science: 1993, 260(5115);1805-8 [PubMed:8390097] [WorldCat.org]

  16. B Cheng, S Christakos, M P Mattson

    Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis.
    Neuron: 1994, 12(1);139-53 [PubMed:7507336] [WorldCat.org]

  17. Johannes G Bode, Jens Schweigart, Jan Kehrmann, Christian Ehlting, Fred Schaper, Peter C Heinrich, Dieter Häussinger

    TNF-alpha induces tyrosine phosphorylation and recruitment of the Src homology protein-tyrosine phosphatase 2 to the gp130 signal-transducing subunit of the IL-6 receptor complex.
    J. Immunol.: 2003, 171(1);257-66 [PubMed:12817006] [WorldCat.org]

  18. S Doré, S Kar, R Quirion

    Rediscovering an old friend, IGF-I: potential use in the treatment of neurodegenerative diseases.
    Trends Neurosci.: 1997, 20(8);326-31 [PubMed:9246719] [WorldCat.org]

  19. J Guan, L Bennet, P D Gluckman, A J Gunn

    Insulin-like growth factor-1 and post-ischemic brain injury.
    Prog. Neurobiol.: 2003, 70(6);443-62 [PubMed:14568359] [WorldCat.org]

  20. R Starr, D J Hilton

    Negative regulation of the JAK/STAT pathway.
    Bioessays: 1999, 21(1);47-52 [PubMed:10070253] [WorldCat.org] [DOI]

  21. C B Johansson, S Momma, D L Clarke, M Risling, U Lendahl, J Frisén

    Identification of a neural stem cell in the adult mammalian central nervous system.
    Cell: 1999, 96(1);25-34 [PubMed:9989494] [WorldCat.org]

  22. Masaki Takahashi, Yasuhisa Arai, Hisashi Kurosawa, Noriyoshi Sueyoshi, Shunichi Shirai

    Ependymal cell reactions in spinal cord segments after compression injury in adult rat.
    J. Neuropathol. Exp. Neurol.: 2003, 62(2);185-94 [PubMed:12578228] [WorldCat.org]

  23. C C Stichel, H W Müller

    The CNS lesion scar: new vistas on an old regeneration barrier.
    Cell Tissue Res.: 1998, 294(1);1-9 [PubMed:9724451] [WorldCat.org]

  24. Samuel David, Steve Lacroix

    Molecular approaches to spinal cord repair.
    Annu. Rev. Neurosci.: 2003, 26;411-40 [PubMed:12626698] [WorldCat.org] [DOI]

  25. Julia E Herrmann, Tetsuya Imura, Bingbing Song, Jingwei Qi, Yan Ao, Thu K Nguyen, Rose A Korsak, Kiyoshi Takeda, Shizuo Akira, Michael V Sofroniew

    STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury.
    J. Neurosci.: 2008, 28(28);7231-43 [PubMed:18614693] [WorldCat.org] [DOI]

  26. S Okada, M Nakamura, Y Mikami, T Shimazaki, M Mihara, Y Ohsugi, Y Iwamoto, K Yoshizaki, T Kishimoto, Y Toyama, H Okano

    Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury.
    J. Neurosci. Res.: 2004, 76(2);265-76 [PubMed:15048924] [WorldCat.org] [DOI]