214
回編集
Hiroyukinakahara (トーク | 投稿記録) 細編集の要約なし |
Hiroyukinakahara (トーク | 投稿記録) 細編集の要約なし |
||
61行目: | 61行目: | ||
*この考え方は、外界刺激の符号化のみならず、符号化を評価する、つまり、神経細胞集団活動(または個々の神経細胞活動)があるときに、どれほど正確にもとの外界刺激の情報を再現できるか、という評価を行うことで、その情報処理を解明するというアプローチにも適用できる。 | *この考え方は、外界刺激の符号化のみならず、符号化を評価する、つまり、神経細胞集団活動(または個々の神経細胞活動)があるときに、どれほど正確にもとの外界刺激の情報を再現できるか、という評価を行うことで、その情報処理を解明するというアプローチにも適用できる。 | ||
*刺激の符号化・復号化だけでなく、いかに行動が発現するかという研究にも適用可能である。人間や動物が、外界からの入力に対応して行動(運動)を行うとき、入力の情報の中から、適切な情報を取捨選択している。いいかえれば、外界情報の全てではなく適切な情報が行動や運動制御に重要となる。その観点から、行動と神経細胞活動の関係を情報量の観点から調べるアプローチも行われている。 | *刺激の符号化・復号化だけでなく、いかに行動が発現するかという研究にも適用可能である。人間や動物が、外界からの入力に対応して行動(運動)を行うとき、入力の情報の中から、適切な情報を取捨選択している。いいかえれば、外界情報の全てではなく適切な情報が行動や運動制御に重要となる。その観点から、行動と神経細胞活動の関係を情報量の観点から調べるアプローチも行われている。 | ||
*神経細胞集団活動の機能的構造の推定を[[情報量の最大化原理]] | *神経細胞集団活動の機能的構造の推定を[[情報量の最大化原理]]から行う、という研究も盛んに行われている。集団活動の評価には、より精緻な情報的概念が必要で、情報幾何のアプローチはその一翼を担っている(<ref>中原裕之, 2009'''中原裕之'''<br>意思決定とその学習理論(第5章). シリーズ脳科学 第1巻 脳の計算論. pp.159-221<br>''東大出版会'':2009</ref>)。 | ||
*脳の学習則の研究にも情報量の概念はさまざまに役立っている。たとえば、シナプス可塑性の学習則を前シナプス細胞と後シナプス細胞の間の活動とその情報量の関係から調べる、などが挙げられる。 | *脳の学習則の研究にも情報量の概念はさまざまに役立っている。たとえば、シナプス可塑性の学習則を前シナプス細胞と後シナプス細胞の間の活動とその情報量の関係から調べる、などが挙げられる。 | ||
*脳科学における情報量とその使い方を解説した教科書も複数出ているので必要に応じて参照されたい(Dayan and Abbot, 2001<ref>'''Dayan, P., and Abbot, L.F. '''<br>Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems<br>MIT Press'':2001</ref>; Rieke et al., 1999<ref>'''Rieke, F., Warland, D., Deruytervansteveninck, R., and Bialek, W.'''<br>Spikes: Exploring the Neural Code<br>(Computational Neuroscience) (MIT Press'':1949</ref>)。 | *脳科学における情報量とその使い方を解説した教科書も複数出ているので必要に応じて参照されたい(Dayan and Abbot, 2001<ref>'''Dayan, P., and Abbot, L.F. '''<br>Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems<br>MIT Press'':2001</ref>; Rieke et al., 1999<ref>'''Rieke, F., Warland, D., Deruytervansteveninck, R., and Bialek, W.'''<br>Spikes: Exploring the Neural Code<br>(Computational Neuroscience) (MIT Press'':1949</ref>)。 | ||
<references /> | <references /> |
回編集