「髄鞘」の版間の差分

ナビゲーションに移動 検索に移動
194 バイト追加 、 2012年6月19日 (火)
編集の要約なし
編集の要約なし
編集の要約なし
11行目: 11行目:
== <br>髄鞘を形成する細胞  ==
== <br>髄鞘を形成する細胞  ==


 髄鞘を形成しているのはグリア細胞であり、中枢神経系の髄鞘はオリゴデンドロサイト、末梢神経系の髄鞘はシュワン細胞によって形成される(図1)。中枢神経系では1つのオリゴデンドロサイトが複数の突起を出し、突起毎に1本の軸索を認識して何重にも軸索を取り囲んだ後、細胞質成分を押し出して密な膜構造(髄鞘)を形成する(図2)。それに対して、末梢神経系ではシュワン細胞そのものが軸索を取り囲む。1つのシュワン細胞は軸索束を取り囲んだ後、1本の軸索を選別して、その1本の軸索で髄鞘を形成する[6]。末梢神経系の髄鞘ではシュワン細胞の細胞質が髄鞘の中に取り残された部分(シュミット・ランターマンの切痕)がある(図3:図1の破線部分を長軸方向に切った模式図)。<br> 中枢神経系のランビエ絞輪にはアストロサイトが突起を伸ばして接触しているが、末梢神経系ではシュワン細胞の微小突起が覆っている。また、末梢神経系の髄鞘は基底膜で覆われているが、中枢神経系の髄鞘にはそれが見られない。  
 髄鞘を形成しているのはグリア細胞であり、中枢神経系の髄鞘はオリゴデンドロサイト、末梢神経系の髄鞘はシュワン細胞によって形成される(図1)。中枢神経系では1つのオリゴデンドロサイトが複数の突起を出し、突起毎に1本の軸索を認識して何重にも軸索を取り囲んだ後、細胞質成分を押し出して密な膜構造(髄鞘)を形成する(図2)。それに対して、末梢神経系ではシュワン細胞そのものが軸索を取り囲む。1つのシュワン細胞は軸索束を取り囲んだ後、1本の軸索を選別して、その1本の軸索で髄鞘を形成する<ref><pubmed>22192173</pubmed></ref>。末梢神経系の髄鞘ではシュワン細胞の細胞質が髄鞘の中に取り残された部分(シュミット・ランターマンの切痕)がある(図3:図1の破線部分を長軸方向に切った模式図)。<br> 中枢神経系のランビエ絞輪にはアストロサイトが突起を伸ばして接触しているが、末梢神経系ではシュワン細胞の微小突起が覆っている。また、末梢神経系の髄鞘は基底膜で覆われているが、中枢神経系の髄鞘にはそれが見られない。  


== <br>髄鞘を構成する成分と髄鞘の構造  ==
== <br>髄鞘を構成する成分と髄鞘の構造  ==


 髄鞘は細胞形質膜の多層構造体であるため、他の多くの細胞の形質膜や細胞内小胞膜と比べてタンパク質成分が少ない。脂質が約70〜80%(乾燥重量比)程度を占め、残り約20〜30%がタンパク質である。このため、髄鞘は他の膜よりも比重が軽いためショ糖密度勾配遠心法により他の膜と分離して調整することができる。髄鞘を構成する主な脂質は糖脂質ガラクトセレブロシドとその硫酸化誘導体スルファチドである[7]。中枢神経系と末梢神経系では髄鞘を産生するグリア細胞が異なり、髄鞘を構築する様式も異なるので、これらの髄鞘を構成するタンパク質の多くは異なる。しかし、中には共通して存在するタンパク質もある。中枢神経系の髄鞘ではPLPとMBPが主成分のタンパク質であり、その他にMOG、MAG、CNPaseなどが存在する。末梢神経系の髄鞘ではP0とP2が主成分のタンパク質であり、PMP22、[[MAG]]、CNPaseなども発現している。<br> 近年、軸索と髄鞘の間では絶えず活発な情報交換が行なわれていることが示されたため、髄鞘は単に絶縁体として働くだけでなく、[[軸索輸送]]や軸索径の調節などに重要な役割を担うことが明らかとなってきた[8][9][10]。髄鞘の重要な働きの1つとして、軸索の機能的ドメイン形成がある[11]。[[有髄神経]]の軸索は髄鞘が取り巻くことによって、ランビエ絞輪・パラノード・ジャクスタパラノード・インターノードといったそれぞれに特徴的形態を持つ4つのドメインに分けられる(図3)。これらの各ドメインは、[[イオンチャネル]]や接着分子などの膜タンパク質がドメイン特異的に集積することにより、形態的のみならず機能的にも異なっている。ランビエ絞輪には活動電位発生に関わる電位依存性[[ナトリウムチャネル]]、ジャクスタパラノードには電位依存性[[カリウムチャネル]]がそれぞれ集積している。この2つのチャネルを隔てるパラノード部分には、軸索と髄鞘の間に作られたパラノーダルジャンクションと呼ばれる細胞間結合が存在する。このジャンクション形成は軸索の機能ドメインの維持に必要であり、Casprやcontactin、NF155などがジャンクション形成に重要である。  
 髄鞘は細胞形質膜の多層構造体であるため、他の多くの細胞の形質膜や細胞内小胞膜と比べてタンパク質成分が少ない。脂質が約70〜80%(乾燥重量比)程度を占め、残り約20〜30%がタンパク質である。このため、髄鞘は他の膜よりも比重が軽いためショ糖密度勾配遠心法により他の膜と分離して調整することができる。髄鞘を構成する主な脂質は糖脂質ガラクトセレブロシドとその硫酸化誘導体スルファチドである<ref><pubmed>9530920</pubmed></ref>。中枢神経系と末梢神経系では髄鞘を産生するグリア細胞が異なり、髄鞘を構築する様式も異なるので、これらの髄鞘を構成するタンパク質の多くは異なる。しかし、中には共通して存在するタンパク質もある。中枢神経系の髄鞘ではPLPとMBPが主成分のタンパク質であり、その他にMOG、MAG、CNPaseなどが存在する。末梢神経系の髄鞘ではP0とP2が主成分のタンパク質であり、PMP22、[[MAG]]、CNPaseなども発現している。<br> 近年、軸索と髄鞘の間では絶えず活発な情報交換が行なわれていることが示されたため、髄鞘は単に絶縁体として働くだけでなく、[[軸索輸送]]や軸索径の調節などに重要な役割を担うことが明らかとなってきた<ref><pubmed>18558866</pubmed></ref><ref><pubmed>18538868</pubmed></ref><ref><pubmed>20216548</pubmed></ref>。髄鞘の重要な働きの1つとして、軸索の機能的ドメイン形成がある<ref><pubmed>14682359</pubmed></ref>。[[有髄神経]]の軸索は髄鞘が取り巻くことによって、ランビエ絞輪・パラノード・ジャクスタパラノード・インターノードといったそれぞれに特徴的形態を持つ4つのドメインに分けられる(図3)。これらの各ドメインは、[[イオンチャネル]]や接着分子などの膜タンパク質がドメイン特異的に集積することにより、形態的のみならず機能的にも異なっている。ランビエ絞輪には活動電位発生に関わる電位依存性[[ナトリウムチャネル]]、ジャクスタパラノードには電位依存性[[カリウムチャネル]]がそれぞれ集積している。この2つのチャネルを隔てるパラノード部分には、軸索と髄鞘の間に作られたパラノーダルジャンクションと呼ばれる細胞間結合が存在する。このジャンクション形成は軸索の機能ドメインの維持に必要であり、Casprやcontactin、NF155などがジャンクション形成に重要である。  


== <br>脱髄疾患および髄鞘形成不全  ==
== <br>脱髄疾患および髄鞘形成不全  ==
23行目: 23行目:
== <br>髄鞘を持つ動物  ==
== <br>髄鞘を持つ動物  ==


 神経系において情報を高速処理するために、伝導速度を上げることは重要である。このため、進化の過程で神経系は2つの仕組みを獲得してきた。1つは、軸索の直径を巨大化させることである。例としてイカの巨大軸索が挙げられる。もう1つは髄鞘を持つことである。多くの動物種がこれらの仕組みを利用している。髄鞘はヤツメウナギやヌタウナギなどの脊椎動物として最も古い無顎類に属する円口類を除く脊椎動物に存在し、軟骨魚類以降の脊椎動物が持つ特徴的な構造体と考えられてきた。しかし、平行進化によって無脊椎動物の中には髄鞘様の構造を持つものが存在する(図4)。エビやミミズ、ある種のミジンコの仲間などが髄鞘様の構造を有する<ref><pubmed>17208176 </pubmed></ref>。  
 神経系において情報を高速処理するために、伝導速度を上げることは重要である。このため、進化の過程で神経系は2つの仕組みを獲得してきた。1つは、軸索の直径を巨大化させることである。例としてイカの巨大軸索が挙げられる。もう1つは髄鞘を持つことである。多くの動物種がこれらの仕組みを利用している。髄鞘はヤツメウナギやヌタウナギなどの脊椎動物として最も古い無顎類に属する円口類を除く脊椎動物に存在し、軟骨魚類以降の脊椎動物が持つ特徴的な構造体と考えられてきた。しかし、平行進化によって無脊椎動物の中には髄鞘様の構造を持つものが存在する(図4)。エビやミミズ、ある種のミジンコの仲間などが髄鞘様の構造を有する<ref><pubmed>17208176</pubmed></ref>。  


<br>  
<br>  
37

回編集

案内メニュー