121
回編集
Masashikawasaki (トーク | 投稿記録) 細編集の要約なし |
Masashikawasaki (トーク | 投稿記録) 細編集の要約なし |
||
7行目: | 7行目: | ||
== 電気器官 == | == 電気器官 == | ||
発電器官ともいう。電気器官は多数の発電細胞 (electrocyte) から成る興奮性の器官で、種類によって様々な部位にある(図)。発電細胞は筋繊維由来の興奮性細胞であるが収縮機能は発生過程に失う。電気的興奮を示す部位が、細胞膜上で偏って分布することで細胞外に電場が発生する(図?)。発電の指令は延髄にあるペースメーカー核(またはコマンド核)で生じ、脊髄の電気運動ニューロンを経てすべての発電細胞に同時に伝達される。直列に配置された発電細胞が同時発火するために電気器官全体で高い電圧を得る。強電気魚では, 多数の発電細胞が直列に配置され高電圧(デンキウナギでは600V)、また並列に配置されることにより大電流 (シビレエイでは20A) を発生する。このようにして発生した電気器官放電 (electric organ discharge) は、持続時間 0.1 ~ 数ミリ秒と短いが、10 ~ 1500 Hz の頻度で昼夜を問わず休みなく継続する。電気コミュニケーションに使われる電気信号は、発電波形や発電頻度の変化として現れる。 | 発電器官ともいう。電気器官は多数の発電細胞 (electrocyte) から成る興奮性の器官で、種類によって様々な部位にある(図)。発電細胞は筋繊維由来の興奮性細胞であるが収縮機能は発生過程に失う。電気的興奮を示す部位が、細胞膜上で偏って分布することで細胞外に電場が発生する(図?)。発電の指令は延髄にあるペースメーカー核(またはコマンド核)で生じ、脊髄の電気運動ニューロンを経てすべての発電細胞に同時に伝達される。直列に配置された発電細胞が同時発火するために電気器官全体で高い電圧を得る。強電気魚では, 多数の発電細胞が直列に配置され高電圧(デンキウナギでは600V)、また並列に配置されることにより大電流 (シビレエイでは20A) を発生する。このようにして発生した電気器官放電 (electric organ discharge) は、持続時間 0.1 ~ 数ミリ秒と短いが、10 ~ 1500 Hz の頻度で昼夜を問わず休みなく継続する。電気コミュニケーションに使われる電気信号は、発電波形や発電頻度の変化として現れる。 | ||
== 電気受容器 == | == 電気受容器 == | ||
電気受容器は電気抵抗の高い皮膚に埋め込まれるように存在し体皮に広く分布し、皮膚内外の電位差に応じて神経信号を発生する。直流 ~ 50 Hz 程度の低周波に応じるアンプラ型と高周波に応じる結節型とがある。アンプラ型電気受容器は、ヤツメウナギ、シーラカンス、軟骨魚等の下等魚類とすべての電気魚に見られ、感度が高い (10- | 電気受容器は電気抵抗の高い皮膚に埋め込まれるように存在し体皮に広く分布し、皮膚内外の電位差に応じて神経信号を発生する。直流 ~ 50 Hz 程度の低周波に応じるアンプラ型と高周波に応じる結節型とがある。アンプラ型電気受容器は、ヤツメウナギ、シーラカンス、軟骨魚等の下等魚類とすべての電気魚に見られ、感度が高い (10<sup>-6</sup>V/cm)。電気魚以外の他の生物(主に被食者)の微弱な生物電気を受容するために発達したと考えられる。結節型電気受容器は電気魚にだけに見られる。感度は低く、電気器官からの比較的強い電場 (10<sup>-3</sup>V/cm)に応じる。結節型電気受容器は、脳への信号伝達の様式によって、信号強度をインパルス頻度で符号化する振幅型と、信号発生のタイミングをインパルスの発生時間で符号化する位相型に分けられる。 | ||
== 電気的行動 == | == 電気的行動 == | ||
27行目: | 27行目: | ||
=== 混信回避行動 === | === 混信回避行動 === | ||
自己の発電と他の魚の発電が時間的に重なると混信が起こり電気定位の能力が阻害される。混信を回避するために自己の発電のタイミングを変化させるのが混信回避行動 (jamming avoidance response)である。短いパルスを散発的に発する電気魚では、相手魚の発電時間を予測し、それに重ならないよう自らの発電の瞬間を調節する。パルスが高頻度で発生し連続波形(正弦波状)の発電をする電気魚では、発電のタイミングを変化させても相手魚とのパルスの重なりを避けることはできない。このような電気魚では、自己の発電周波数を相手魚のそれから遠ざける方向に変化させる。その結果、周波数差がより大きくなり混信が回避される。相手魚の周波数が自己の周波数より高いか低いかによって自己の周波数を下げるか上げるかを決定するが、その計算アルゴリズムと神経機構は以下のようなものである。 (1) 自己と相手の発電の和信号を感覚信号としてサンプルする。ペースメーカー核にエフェレンスコピーとして存在する自己発電周波数の情報は使わない。(2) 和信号の振幅変調の経時的変化を検出。(3) 和信号の位相を検出。(4) 体の各部からの位相差を検出。(5) 相手魚の周波数の高低によって異なる (2)と(4) の時間パタンを読み出す。(6) (5)の計算結果が示す空間的曖昧さを (2) の結果と空間加重することによって解決する。(7) 神経計算の最終結果はペースメーカー核へ投射信号として提示される。(1)の過程は振幅型と位相型の電気受容器、(2) は脳の振幅型ニューロン, (3)は脳のフェーズロックニューロンによってコードされる。(4) の過程は (3) のニューロン間の活動電位の発生時間差に感受性のある符合一致検出回路が実行する。(5)の過程はこれらニューロンが収れん投射するニューロンが実行する。延髄の電気感覚側線葉と中脳の半円堤に分布するこれらの神経回路は (6)に対応するものを除いて神経生理学的解剖学的のよく理解されている。 | 自己の発電と他の魚の発電が時間的に重なると混信が起こり電気定位の能力が阻害される。混信を回避するために自己の発電のタイミングを変化させるのが混信回避行動 (jamming avoidance response)である。短いパルスを散発的に発する電気魚では、相手魚の発電時間を予測し、それに重ならないよう自らの発電の瞬間を調節する。パルスが高頻度で発生し連続波形(正弦波状)の発電をする電気魚では、発電のタイミングを変化させても相手魚とのパルスの重なりを避けることはできない。このような電気魚では、自己の発電周波数を相手魚のそれから遠ざける方向に変化させる。その結果、周波数差がより大きくなり混信が回避される。相手魚の周波数が自己の周波数より高いか低いかによって自己の周波数を下げるか上げるかを決定するが、その計算アルゴリズムと神経機構は以下のようなものである。 (1) 自己と相手の発電の和信号を感覚信号としてサンプルする。ペースメーカー核にエフェレンスコピーとして存在する自己発電周波数の情報は使わない。(2) 和信号の振幅変調の経時的変化を検出。(3) 和信号の位相を検出。(4) 体の各部からの位相差を検出。(5) 相手魚の周波数の高低によって異なる (2)と(4) の時間パタンを読み出す。(6) (5)の計算結果が示す空間的曖昧さを (2) の結果と空間加重することによって解決する。(7) 神経計算の最終結果はペースメーカー核へ投射信号として提示される。(1)の過程は振幅型と位相型の電気受容器、(2) は脳の振幅型ニューロン, (3)は脳のフェーズロックニューロンによってコードされる。(4) の過程は (3) のニューロン間の活動電位の発生時間差に感受性のある符合一致検出回路が実行する。(5)の過程はこれらニューロンが収れん投射するニューロンが実行する。延髄の電気感覚側線葉と中脳の半円堤に分布するこれらの神経回路は (6)に対応するものを除いて神経生理学的解剖学的のよく理解されている。 | ||
<br> | |||
<references /> | <references /> | ||
(執筆者:川崎 雅司、担当編集委員:) | (執筆者:川崎 雅司、担当編集委員:) |
回編集