121
回編集
Masashikawasaki (トーク | 投稿記録) 細編集の要約なし |
Masashikawasaki (トーク | 投稿記録) 細編集の要約なし |
||
7行目: | 7行目: | ||
== 電気器官 == | == 電気器官 == | ||
発電器官ともいう。多数の発電細胞 (electrocyte) から成る興奮性の器官で、種類によって様々な部位にある<ref name=ref1 />(図1)。発電細胞は筋繊維由来の興奮性細胞であるが、収縮機能は個体発生の過程で失われる。電気的興奮を示す部位が細胞膜上に偏って分布することで、細胞外に電場が発生する(図2)。発電の指令は延髄にあるペースメーカー核(またはコマンド核)で生じ、脊髄の電気運動ニューロンを経てすべての発電細胞に同時に伝達される<ref>'''M Kawasaki''' <br>Generation of Electric Signals<br>In ''Encyclopedia of Fish Physiology'' Academic Press p.398;2011</ref>。直列に配置された発電細胞が同時発火するために電気器官全体で高い電圧を得る。デンキウナギでは, 多数の発電細胞が直列に配置され600Vの高電圧を、またシビレエイでは発電細胞が並列に配置されることにより 20A の大電流を発生する。電気器官放電 (electric organ discharge) は、持続時間が 0.1 ~ 数ミリ秒と短いが、10 ~ 1500 Hz の頻度で昼夜を問わず休みなく継続する。電気コミュニケーションに使われる電気信号は、発電波形や発電頻度の変化として現れる。 | |||
== 電気受容器 == | == 電気受容器 == | ||
電気受容器は電気抵抗の高い皮膚に埋め込まれるように体皮に広く分布し、皮膚内外の電位差に応じて神経信号を発生する。直流 ~ 50 Hz 程度の低周波に応じるアンプラ型と、高周波に応じる結節型がある。アンプラ型電気受容器は、ヤツメウナギ、シーラカンス、軟骨魚等の下等魚類とすべての電気魚に見られ、感度が高い (10<sup>-6</sup>V/cm)。電気魚以外の生物(主に被食者)の微弱な生物電気を受容するために発達したものと考えられる<ref>'''D Bodznick, J C Montgomery'''<br>The Physiology of Low-Frequency Electrosensory Systems<br>In ''Electroreception'' p.132 Springer: 2005</ref>。結節型電気受容器は電気魚だけに見られ、感度は低く、電気器官からの比較的強い電場 (10<sup>-3</sup>V/cm)に応じる。脳への信号伝達の様式によって、信号強度をインパルス頻度で符号化する振幅型と、信号発生のタイミングをインパルスの発生時間で符号化する位相型に分けられる<ref>'''M Kawasaki'''<br>Physiology of Tuberous Electrosensory Systems<br>In ''Electroreception'' p.154 Springer: 2005</ref> | |||
== 電気的行動 == | == 電気的行動 == | ||
19行目: | 19行目: | ||
=== 電気定位 === | === 電気定位 === | ||
電気魚が体の周囲に作った電場に、水とは電気的性質の異なる物体が侵入すると電場が乱れる。電気定位とは、電気魚が電場の乱れを検出することにより物体の位置、距離、大きさ、形<ref><pubmed> 15477023 </pubmed></ref>などの情報を得る行動である。電気魚は物体の電気抵抗成分と電気容量成分を区別することができ、この能力は視覚における色覚に対比される<ref><pubmed>16645886</pubmed></ref>。 | |||
=== 種と性の認識 === | === 種と性の認識 === | ||
モルミリ目の電気魚は、発電パルスの波形が種によってあるいは性によって異なり(図)、異なるパルス波形を弁別することができる。弁別の基礎となるのは波形に含まれる周波数成分ではなく位相(時間)成分である<ref><pubmed> 7209524 </pubmed></ref>。パルス波形の電圧上昇相と降下相の時間差を中脳の時間差検出回路が読み取る<ref><pubmed>9437037</pubmed></ref>。<br> | |||
=== 混信回避行動 === | === 混信回避行動 === | ||
自己の発電と他の魚の発電が時間的に重なると混信が起こり、電気定位の能力が阻害される。混信を回避するために自己の発電のタイミングあるいは周波数を変化させるのが混信回避行動 (jamming avoidance response)である<ref>'''弱電気魚の混信身回避行動'''</ref>。短いパルスを散発的に発する電気魚では、相手魚の発電時間を予測し、それに重ならないよう自らの発電の瞬間を調節する<ref>'''pulsetypeJAR'''</ref>。パルスが高頻度で発生し連続波形(正弦波状)の発電をする電気魚では、発電のタイミングを変化させても相手魚とのパルスの重なりを避けることはできない。このような電気魚では、自己の発電周波数を相手魚のそれから遠ざける方向に変化させ、周波数差がより大きくなり混信が回避される。相手魚の周波数が自己の周波数より高いか低いかにより自己の周波数を下げるか上げるかを決定するが、その計算アルゴリズムと神経機構は以下のようなものである<ref>'''Neural Nets</ref>。 (1) 自己と相手の発電の和信号を感覚信号としてサンプルする。ペースメーカー核にエフェレンスコピーとして存在する自己発電周波数の情報は使わない。(2) 和信号の振幅変調の経時的変化を検出。(3) 和信号の位相を検出。(4) 体の各部からの位相差を検出。(5) 相手魚の周波数の高低によって異なる (2)と(4) の時間パタンを読み出す。(6) (5)の計算結果が示す空間的曖昧さを (2) の結果と空間加重することによって解決する。(7) 神経計算の最終結果はペースメーカー核へ投射信号として提示される。(1)の過程は振幅型と位相型の電気受容器、(2) は脳の振幅型ニューロン, (3)は脳のフェーズロックニューロンによってコードされる。(4) の過程は (3) のニューロン間の活動電位の発生時間差に感受性のある符合一致検出回路が実行する。(5)の過程はこれらニューロンが収れん投射するニューロンが実行する。延髄の電気感覚側線葉と中脳の半円堤に分布するこれらの神経回路は (6)に対応するものを除いて神経生理学的解剖学的によく理解されている<ref>'''Neural Netsと21世紀の章'''</ref>。系統的に遠い電気魚 EigenmanniaとGymnarchusは、混信回避行動を独立に進化させたにも関わらず、その神経回路には強い類似性がある<ref><pubmed>19799509</pubmed></ref>。<wikiflv height="225" width="400" autostart="true" repeat="always">nokagaku2012.flv</wikiflv> | |||
<br> | <br> |
回編集