「小脳によるタイミング制御」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
Cerebellar Timing Control
Cerebellar Timing Control  


要約:運動を正確に行うには、複数の筋が協調して活動することが必要である。それには筋をそれぞれ適切な強さ(ゲイン)と的確なタイミングで収縮させるような制御が必須である。小脳は運動のゲインを制御するのみならず、同時に数十ミリ秒〜数百ミリ秒の単位のタイミングの制御に重要であることが、臨床医学、生理学や計算論的な研究により示唆されている。ここでは、小脳によるタイミング制御の研究に用いられる運動や認知機能の課題を紹介し、そこから推定される小脳のタイミング制御のメカニズムと特徴について解説する。
要約:運動を正確に行うには、複数の筋が協調して活動することが必要である。それには筋をそれぞれ適切な強さ(ゲイン)と的確なタイミングで収縮させるような制御が必須である。小脳は運動のゲインを制御するのみならず、同時に数十ミリ秒〜数百ミリ秒の単位のタイミングの制御に重要であることが、臨床医学、生理学や計算論的な研究により示唆されている。ここでは、小脳によるタイミング制御の研究に用いられる運動や認知機能の課題を紹介し、そこから推定される小脳のタイミング制御のメカニズムと特徴について解説する。  
 
1.タイミング制御の臨床検査に用いられる課題
一般的に、小脳が障害されると運動の速度が遅くなるとともに運動のリズムが不正確になる 。運動のタイミングに関して、以下のような検査が臨床で用いられている [1]。代表的な小脳症状に反復性拮抗不全(Adiadochokinesis)がある(図 1A)。これは例えば、手のひらをくるくる回すなどの主動筋と拮抗筋を交互に活動させる動作を行う時に、滑らかな一定のリズムで動かすことができないという症状であり、リズム形成の障害と考えられる。タッピング課題(図1B)は、音や光の点滅による指示に従って一定のリズムでボタンを押し、指示が消えた後もそのリズムでボタン押しを続けられるかを調べるものである。健常者は指示されたリズムでボタン押しを続けることができるが、小脳疾患の患者はボタン押しのタイミングにばらつきが生じることが知られている。時間長弁別課題(図1C)は、持続の長さの異なる2種類の音を間隔をおいて提示し、その持続時間の違いを問う課題であり、小脳の認知機能を調べるものである。音声言語医学の分野では、小脳症状の検査として、Voice Onset Time (VOT)の生成と認識の課題が利用される(図1D)。「バ」と「パ」等の無声破裂音と有声破裂音では、第一フォルマントの立ち上がりのタイミングに数十ミリ秒の違いしかない。その発音には構音筋の微妙な協調運動を必要するため、小脳疾患の患者では発音を仕分けるのが困難になる。またその聞き分けは、時間長弁別課題と同様に小脳の認知機能に関係する。


1. 臨床で用いられるタイミング制御の課題
一般的に、小脳が障害されると運動の速度が遅くなるとともに運動のリズムが不正確になる 。運動のタイミングに関して、以下のような検査が臨床で用いられている [1]。代表的な小脳症状に反復性拮抗不全(Adiadochokinesis)がある(図 1A)。これは例えば、手のひらをくるくる回すなどの主動筋と拮抗筋を交互に活動させる動作を行う時に、滑らかな一定のリズムで動かすことができないという症状であり、リズム形成の障害と考えられる。タッピング課題(図1B)は、音や光の点滅による指示に従って一定のリズムでボタンを押し、指示が消えた後もそのリズムでボタン押しを続けられるかを調べるものである。健常者は指示されたリズムでボタン押しを続けることができるが、小脳疾患の患者はボタン押しのタイミングにばらつきが生じることが知られている。時間長弁別課題(図1C)は、持続の長さの異なる2種類の音を間隔をおいて提示し、その持続時間の違いを問う課題であり、小脳の認知機能を調べるものである。音声言語医学の分野では、小脳症状の検査として、Voice Onset Time (VOT)の生成と認識の課題が利用される(図1D)。「バ」と「パ」等の無声破裂音と有声破裂音では、第一フォルマントの立ち上がりのタイミングに数十ミリ秒の違いしかない。その発音には構音筋の微妙な協調運動を必要するため、小脳疾患の患者では発音を仕分けるのが困難になる。またその聞き分けは、時間長弁別課題と同様に小脳の認知機能に関係する。


2. 遅延型瞬目反射の条件付け
2. 遅延型瞬目反射の条件付け
小脳のタイミング制御機構を実験的に検討するのに、瞬目反射の条件付けのパラダイム(図 2A)が用いられる [2]。遅延型瞬目反射の条件付けとは、無条件反射(Unconditioned Stimulus, US)である瞬きを引き起こす無条件刺激 (眼球へのエアパフ刺激)と、音やフラッシュ光による条件刺激(Conditioned Stimulus, CS)を組み合わせて提示することを繰り返すと、CSだけで瞬きをするという条件反応(Conditioned Response, CR)が生じる運動学習である。この反射の目的は、CSが提示されるタイミングを予測し、その時点で眼を閉じることを学習することで、侵害刺激であるUSを回避することにある。瞬きは刺激開始直後ではなく、エアパフのタイミングに同期して起こることが重要である。
小脳のタイミング制御機構を実験的に検討するのに、瞬目反射の条件付けのパラダイム(図 2A)が用いられる [2]。遅延型瞬目反射の条件付けとは、無条件反射(Unconditioned Stimulus, US)である瞬きを引き起こす無条件刺激 (眼球へのエアパフ刺激)と、音やフラッシュ光による条件刺激(Conditioned Stimulus, CS)を組み合わせて提示することを繰り返すと、CSだけで瞬きをするという条件反応(Conditioned Response, CR)が生じる運動学習である。この反射の目的は、CSが提示されるタイミングを予測し、その時点で眼を閉じることを学習することで、侵害刺激であるUSを回避することにある。瞬きは刺激開始直後ではなく、エアパフのタイミングに同期して起こることが重要である。
図 2Bに遅延型瞬目反射の条件付けに関係する神経回路を示す。エアパフの情報(US)は、眼球の知覚を司る三叉神経核から、下オリーブ核を経由し、登上線維によって小脳皮質の第VI小脳半球のプルキンエ細胞とその出力先である小脳中位核と歯状核に、それぞれ伝えられる。音に関する情報(CS)は、蝸牛神経核から橋核を経て、苔状線維により、同じく第VI小脳半球の顆粒細胞に送られるとともに、その側枝により、第VI小脳半球のプルキンエ細胞の出力先の小脳中位核と歯状核にも送られる。従って、小脳皮質と小脳核にはそれぞれ苔状線維と登上線維の入力によりCSとUSの情報が伝えられることになる。小脳核の出力は赤核を経て、瞬きを引き起こす筋群を駆動する顔面神経の運動核と外転神経核に伝えられる。
図 2Bに遅延型瞬目反射の条件付けに関係する神経回路を示す。エアパフの情報(US)は、眼球の知覚を司る三叉神経核から、下オリーブ核を経由し、登上線維によって小脳皮質の第VI小脳半球のプルキンエ細胞とその出力先である小脳中位核と歯状核に、それぞれ伝えられる。音に関する情報(CS)は、蝸牛神経核から橋核を経て、苔状線維により、同じく第VI小脳半球の顆粒細胞に送られるとともに、その側枝により、第VI小脳半球のプルキンエ細胞の出力先の小脳中位核と歯状核にも送られる。従って、小脳皮質と小脳核にはそれぞれ苔状線維と登上線維の入力によりCSとUSの情報が伝えられることになる。小脳核の出力は赤核を経て、瞬きを引き起こす筋群を駆動する顔面神経の運動核と外転神経核に伝えられる。
遅延型瞬目反射の条件付けに小脳を含む神経回路が重要な役割を演じていることが、破壊実験や薬物を用いた不活化の実験、神経活動の記録実験の結果により示唆されている。条件付けを行なう前に小脳皮質を破壊すると、いくらトレーニングを行なってもCSに同期した正確なCRが生じない。また条件付けが生じた後に小脳皮質を破壊すると、CSのタイミングに同期したCRが消失する。このことは小脳皮質がCSの時間情報を正確に反映する条件付けに必要であり、CSとCRの連合には主に小脳核が関与していることを示唆する。小脳皮質の平行線維―プルキンエ細胞間シナプスには、登上線維入力によって長期抑圧(Long-term depression, LTD)と呼ばれる可塑性が生じる [3]が、これが小脳皮質によるCSのタイミングの学習の原因であるという仮説が提出されている。これについては4節で解説する。
遅延型瞬目反射の条件付けに小脳を含む神経回路が重要な役割を演じていることが、破壊実験や薬物を用いた不活化の実験、神経活動の記録実験の結果により示唆されている。条件付けを行なう前に小脳皮質を破壊すると、いくらトレーニングを行なってもCSに同期した正確なCRが生じない。また条件付けが生じた後に小脳皮質を破壊すると、CSのタイミングに同期したCRが消失する。このことは小脳皮質がCSの時間情報を正確に反映する条件付けに必要であり、CSとCRの連合には主に小脳核が関与していることを示唆する。小脳皮質の平行線維―プルキンエ細胞間シナプスには、登上線維入力によって長期抑圧(Long-term depression, LTD)と呼ばれる可塑性が生じる [3]が、これが小脳皮質によるCSのタイミングの学習の原因であるという仮説が提出されている。これについては4節で解説する。


3. 小脳神経回路の神経活動の同期的振動
3. 小脳神経回路の神経活動の同期的振動
神経細胞集団の同期したスパイク発射や膜電位の小さな振動が、脳の情報処理の基盤となるという仮説が、海馬や大脳皮質視覚野について提出されている [4]。小脳でも複数の場所で神経活動の同期振動が見られ、それがタイミング制御に関係しているとする考え方が提出されている。
神経細胞集団の同期したスパイク発射や膜電位の小さな振動が、脳の情報処理の基盤となるという仮説が、海馬や大脳皮質視覚野について提出されている [4]。小脳でも複数の場所で神経活動の同期振動が見られ、それがタイミング制御に関係しているとする考え方が提出されている。
小脳皮質の顆粒細胞層の局所電場電位に、10Hz程度の同期的振動があることが知られている。顆粒細胞層は顆粒細胞とゴルジ細胞からなるが、この同期的振動に、これらの神経細胞の膜の性質や神経細胞間ネットワークなどが関与することが示唆されている(次節参照)。この振動は主に動物が静止している時に観測され、運動開始とともに消失するのが特徴であり、運動の開始に関係すると考えられている [5]。
小脳皮質の顆粒細胞層の局所電場電位に、10Hz程度の同期的振動があることが知られている。顆粒細胞層は顆粒細胞とゴルジ細胞からなるが、この同期的振動に、これらの神経細胞の膜の性質や神経細胞間ネットワークなどが関与することが示唆されている(次節参照)。この振動は主に動物が静止している時に観測され、運動開始とともに消失するのが特徴であり、運動の開始に関係すると考えられている [5]。
小脳皮質に登上線維を送る下オリーブ核の神経細胞には電気的結合があり、その膜電位にも小さな10Hz程度の同期振動が見られる。Harmalineという薬物を全身投与すると、全身に10Hz程度の振戦症状が出現することから、下オリーブ核の神経細胞の同期的振動が、小脳のベースクロックとなるという考え方が提出されている [6]。しかし、無麻酔覚醒の動物から記録される下オリーブ核の神経活動(複雑発射)には同期する傾向はなく、むしろ運動の開始や運動誤差を反映していることが報告されており、この考え方は広く認められるにはいたっていない [7-9]。
小脳皮質に登上線維を送る下オリーブ核の神経細胞には電気的結合があり、その膜電位にも小さな10Hz程度の同期振動が見られる。Harmalineという薬物を全身投与すると、全身に10Hz程度の振戦症状が出現することから、下オリーブ核の神経細胞の同期的振動が、小脳のベースクロックとなるという考え方が提出されている [6]。しかし、無麻酔覚醒の動物から記録される下オリーブ核の神経活動(複雑発射)には同期する傾向はなく、むしろ運動の開始や運動誤差を反映していることが報告されており、この考え方は広く認められるにはいたっていない [7-9]。
23行目: 22行目:


5. 小脳によるタイミング制御の特徴
5. 小脳によるタイミング制御の特徴
  時間情報は脳の様々な部位で表現され、運動制御や認知機能に利用される。小脳のタイミング制御の特徴は、無意識で行われる前向き制御の運動のタイミングを学習により正確にすることであり、制御できる時間は数十ミリ秒~数百ミリ秒の範囲である。一方、大脳皮質の時間情報処理は、ワーキングメモリー(作業記憶)を特異的にコードする神経細胞があることからもわかるように、制御できる時間は数百ミリ秒~数秒以上にわたり、かつ意識されることが特徴である。また、その時間情報の精度は小脳ほど正確ではない。大脳基底核の障害では、パーキンソン病のように自発的な運動が全般的に遅くなるような症状と、舞踏病やチックのような急速な不随意運動と、対極的な症状が出現する。大脳基底核の機能については、運動によって生じる報酬の予測という考え方が主流となっているが、これが運動の遅延と急速化という2つの対極的状態とどのように関連するかは今のところ知られてはいない。小脳障害では、運動の開始が遅延し、運動のリズムが遅くなることがしばしば生じるが、これは、感覚フィードバックを用いる運動に比べて十分に速い運動を可能にする小脳による前向き制御の障害によるものと解釈される。瞬目反射の条件付けの例が示すように、小脳皮質のタイミング学習の目標は、あくまでも、運動を起こす時間を正確にすることにより運動誤差を最小にすることにある。ヒトでは小脳皮質のタイミング学習は認知機能とも深く関わっているようであるが、その詳細については今後の研究課題である。
 時間情報は脳の様々な部位で表現され、運動制御や認知機能に利用される。小脳のタイミング制御の特徴は、無意識で行われる前向き制御の運動のタイミングを学習により正確にすることであり、制御できる時間は数十ミリ秒~数百ミリ秒の範囲である。一方、大脳皮質の時間情報処理は、ワーキングメモリー(作業記憶)を特異的にコードする神経細胞があることからもわかるように、制御できる時間は数百ミリ秒~数秒以上にわたり、かつ意識されることが特徴である。また、その時間情報の精度は小脳ほど正確ではない。大脳基底核の障害では、パーキンソン病のように自発的な運動が全般的に遅くなるような症状と、舞踏病やチックのような急速な不随意運動と、対極的な症状が出現する。大脳基底核の機能については、運動によって生じる報酬の予測という考え方が主流となっているが、これが運動の遅延と急速化という2つの対極的状態とどのように関連するかは今のところ知られてはいない。小脳障害では、運動の開始が遅延し、運動のリズムが遅くなることがしばしば生じるが、これは、感覚フィードバックを用いる運動に比べて十分に速い運動を可能にする小脳による前向き制御の障害によるものと解釈される。瞬目反射の条件付けの例が示すように、小脳皮質のタイミング学習の目標は、あくまでも、運動を起こす時間を正確にすることにより運動誤差を最小にすることにある。ヒトでは小脳皮質のタイミング学習は認知機能とも深く関わっているようであるが、その詳細については今後の研究課題である。


参考文献
参考文献
37行目: 36行目:
[10] Yamazaki T, Tanaka S. (2009) Cerebellum 8:423-432.
[10] Yamazaki T, Tanaka S. (2009) Cerebellum 8:423-432.


関連項目: 小脳の神経回路、瞬目反射の条件付け、前庭動眼反射
 
関連項目: 小脳の神経回路、瞬目反射の条件付け、前庭動眼反射  


(執筆者: 山崎 匡、永雄 総一、担当編集委員: 渡辺 大)
(執筆者: 山崎 匡、永雄 総一、担当編集委員: 渡辺 大)
68

回編集

案内メニュー