「トポグラフィックマッピング」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
8行目: 8行目:
== topographic mappingのミッション ==
== topographic mappingのミッション ==


 高等動物において外界から入力される感覚情報は脳内の特定の領域内において2次元上の神経細胞の発火パターンへと変換され、これが感覚情報の処理の基盤となる。例えば視覚において、網膜の中のある視細胞がその受け持つ視覚フィールド内のある位置における情報を受け取るが、網膜のそれぞれの視細胞の情報は脳の特異的な細胞へ伝達される。そうすることによって、網膜内での位置関係(つまりは視覚フィールドにおける位置関係)が脳内での位置関係に転換され、視覚フィールドの空間における位置情報を視覚野で認識することができる。これをするためにはそれぞれの視細胞につながる網膜神経節細胞の軸索が視覚系においてトポグラフィックにターゲッティングする事が必要となる。これがトポグラフィックマッピングであり、その結果、脳内にトポグラフィックなマップができる。さらに視覚系においては両眼視ができる動物では、両方の眼から入った視野内の同じ地点からの情報は脳内の同じ地点に投射する必要がある。それについてもトポグラフィックなマッピングが必要で、それによって形成された両眼視によってさらに立体視も可能となる。また、視覚によって得られた情報をさらに認知するにあたって脳内での行き先によって認知される内容が異なるので(例えばwhatとhow)、この基本にトポグラフィックマッピングがあるとも考えられる(嗅覚系ではある特定のにおいがそれによって引き起こされる特定の行動に結びつく基本にトポグラフィックマップがある。詳しくは嗅覚系の項を参照のこと)。先に述べたように視覚系においても神経細胞の活動なしに起こる過程と神経細胞の活動性に依存して起こる過程がある。
 高等動物において外界から入力される感覚情報は脳内の特定の領域内において2次元上の神経細胞の発火パターンへと変換され、これが感覚情報の処理の基盤となる。例えば視覚において、網膜の中のある視細胞がその受け持つ視覚フィールド内のある位置における情報を受け取るが、網膜のそれぞれの視細胞の情報は脳の特異的な細胞へ伝達される。そうすることによって、網膜内での位置関係(つまりは視覚フィールドにおける位置関係)が脳内での位置関係に転換され、視覚フィールドの空間における位置情報を視覚野で認識することができる。これをするためにはそれぞれの視細胞につながる網膜神経節細胞の軸索が視覚系においてトポグラフィックにターゲッティングする事が必要となる。これがトポグラフィックマッピングであり、その結果、脳内にトポグラフィックなマップができる。さらに両眼視ができる動物では、両方の眼から入った視野内の同じ地点からの情報は脳内の同じ地点に投射する必要がある。それについてもトポグラフィックなマッピングが必要で、それによって形成された両眼視によってさらに立体視も可能となる。また、視覚によって得られた情報を認知するにあたって視覚野から脳内での行き先によって認知される内容が異なるので(例えばwhatとhow)、この基本に視覚野でのトポグラフィックマッピングがあるとも考えられる(嗅覚系ではある特定のにおいがそれによって引き起こされる特定の行動に結びつく基本にトポグラフィックマップがある。詳しくは嗅覚系の項を参照のこと)。先に述べたように視覚系においても神経細胞の活動(網膜の活動)なしに起こる過程と(網膜)神経細胞の活動性に依存して起こる過程がある。




21行目: 21行目:
 その流れを汲んで、その後視覚系を中心にトポグラフィックマッピングのメカニズムを追求する努力がなされた。ニワトリの眼において耳側と鼻側の網膜神経節細胞はそれぞれ視蓋の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される(図1)。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。Friedrich Bonhoefferのグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。
 その流れを汲んで、その後視覚系を中心にトポグラフィックマッピングのメカニズムを追求する努力がなされた。ニワトリの眼において耳側と鼻側の網膜神経節細胞はそれぞれ視蓋の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される(図1)。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。Friedrich Bonhoefferのグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。


 この流れがEph-Ephrinの発見につながっていった事はご承知の通りである(直接の発見は実は偶然であったのだが)。これについてはその項を参照いただきたい。
 上記のアッセイを利用してBonhoefferのグループは1990年に生化学的にニワトリの視蓋の後側に発現している分子を精製した。RAGSと呼ばれたこの分子はPI-PLC処理によって膜から外れることからGPI結合性の膜結合タンパク質であることがわかっていた。その後、彼のグループのUwe Drescherらが遺伝子クローニングを含めて更なる分子の同定を試みていた。その頃、ファミリーの非常に多い新しいチロシンキナーゼ分子が同定され、それについての研究が様々なグループで行われていた。中でもレジェネロンのGeorge Yancopoulosのグループはこのキナーゼのファミリーの同定とそのリガンドの解明を行っていた。Phil Leaderの弟子にあたるJohn Flanaganもハーバードにラボを持った頃で、彼のプロジェクトの一つにこのキナーゼの一つに対するリガンドの発現クローニングを行っていた。


図3
図3
131

回編集

案内メニュー