79
回編集
Mitsutoshisetou (トーク | 投稿記録) 細編集の要約なし |
Mitsutoshisetou (トーク | 投稿記録) 細編集の要約なし |
||
4行目: | 4行目: | ||
==質量分析計とは== | ==質量分析計とは== | ||
世界初の質量分析計は、約100年前に[[wikipedia:Ja:J._J._Thomson|J. J. Thomson]]により作られた放物線型質量分析計である。日本では質量分析計は大阪大学の緒方と浅田らにより1930年代に初めて作られた。質量分析計は1950年代まで主に原子質量の精密測定に用いられていたが、1960年代以降、有機化合物や生体高分子などをイオン化する方法が開発されたことにより、今日では様々な分野で必要不可欠な分析機器のひとつとなっている。 | 世界初の質量分析計は、約100年前に[[wikipedia:Ja:J._J._Thomson|J. J. Thomson]]により作られた放物線型質量分析計である。日本では質量分析計は大阪大学の緒方と浅田らにより1930年代に初めて作られた。質量分析計は1950年代まで主に原子質量の精密測定に用いられていたが、1960年代以降、有機化合物や生体高分子などをイオン化する方法が開発されたことにより、今日では様々な分野で必要不可欠な分析機器のひとつとなっている。<br> | ||
ペプチドや代謝物等の生体分子が測定可能となってから、脳科学を初めとする生命科学分野における質量分析計の利用は著明に増加してきた。質量分析計はNMR、X線構造解析に比べ極めて高い感度を持つことから、血液や脳脊髄液中の微量分子を測定対象とした疾患バイオマーカー探索に中心的役割を果たしてきた<ref><pubmed>20971518</pubmed></ref>。神経ペプチドはリン酸化、アセリル化、ユビキチン化等の翻訳後修飾により機能調節を受けるが、質量分析計はこれらの翻訳後修飾部位の網羅的マッピングにも利用されている<ref><pubmed>17901869</pubmed></ref>。 | ペプチドや代謝物等の生体分子が測定可能となってから、脳科学を初めとする生命科学分野における質量分析計の利用は著明に増加してきた。質量分析計はNMR、X線構造解析に比べ極めて高い感度を持つことから、血液や脳脊髄液中の微量分子を測定対象とした疾患バイオマーカー探索に中心的役割を果たしてきた<ref><pubmed>20971518</pubmed></ref>。神経ペプチドはリン酸化、アセリル化、ユビキチン化等の翻訳後修飾により機能調節を受けるが、質量分析計はこれらの翻訳後修飾部位の網羅的マッピングにも利用されている<ref><pubmed>17901869</pubmed></ref>。 | ||
回編集