49
回編集
Yukihashimotodani (トーク | 投稿記録) 細編集の要約なし |
Yukihashimotodani (トーク | 投稿記録) 細編集の要約なし |
||
7行目: | 7行目: | ||
== 種類 == | == 種類 == | ||
初めに発見されたエンドカンナビノイドはアナンダミド(またはN-アラキドノイルエタノールアミド)で1992年にブタの脳から抽出・同定された<ref><pubmed>1470919</pubmed></ref>。アナンダミド(anandamide)という名はサンスクリット語で「至福」を意味するanandaから取られた。2番目のエンドカンナビノイドとして1995年にイヌの腸およびラットの脳から2-AGが同定された<ref><pubmed>7605349</pubmed></ref><ref><pubmed>7575630</pubmed></ref> | 初めに発見されたエンドカンナビノイドはアナンダミド(またはN-アラキドノイルエタノールアミド)で1992年にブタの脳から抽出・同定された<ref><pubmed>1470919</pubmed></ref>。アナンダミド(anandamide)という名はサンスクリット語で「至福」を意味するanandaから取られた。2番目のエンドカンナビノイドとして1995年にイヌの腸およびラットの脳から2-AGが同定された<ref><pubmed>7605349</pubmed></ref><ref><pubmed>7575630</pubmed></ref>。この他にも、ノラジンエーテル、''N''-アラキドノイルドーパミンなど数種類がエンドカンナビノイドとして報告されているが生理的に機能しているかどうか明らかでない。現在のところアナンダミドと2-AGが生理的に主要なエンドカンナビノイドと考えられている。脳内の含有量は2-AGがアナンダミドに対しておよそ数十から数百倍多い。アナンダミドはカンナビノイド受容体以外にもバニロイド受容体のアゴニストとしても働くため、エンドバニロイドとしても知られる。 | ||
== 生合成と分解 == | == 生合成と分解 == | ||
アナンダミドと2-AGの生合成には複数の経路が知られている。ここでは最も主要であると考えられている経路を示す<ref><pubmed>14595399</pubmed></ref><ref><pubmed>16678907</pubmed></ref>。アナンダミドと2- | アナンダミドと2-AGの生合成には複数の経路が知られている。ここでは最も主要であると考えられている経路を示す<ref><pubmed>14595399</pubmed></ref><ref><pubmed>16678907</pubmed></ref>。アナンダミドと2-AGはどちらも膜のリン脂質から2つの酵素反応によって生成される。アナンダミドは''N''-アシル転移酵素とホスホリパーゼD、2-AGはホスホリパーゼC(PLC)とジアシルグリセロールリパーゼ(DGL)によって生成される(図2)。中枢神経系においてエンドカンナビノイドはもっぱらニューロンで作られる。しかしグリア細胞も作ることができるとの報告がある<ref><pubmed>15371507</pubmed></ref>。どちらのエンドカンナビノイドも加水分解によって代謝される。アナンダミドは脂肪酸アミド加水分解酵素(FAAH)、2-AGはモノアシルグリセロールリパーゼ(MGL)によって分解される(図2)。これら主要経路以外にもシクロオキシゲナーゼー2(COX-2)による酸化によってもアナンダミド、2-AGともに代謝される。また最近2-AGを選択的に分解する新たな酵素としてABHD6とABHD12が同定された<ref><pubmed>18096503</pubmed></ref>。[[Image:Yukihashimotodani fig 2.jpg|thumb|right|500px|図2 エンドカンナビノイドの生合成と分解経路 橋本谷祐輝 他:実験医学,Vol.28 No.20:3409-3414,2010より引用]] | ||
== カンナビノイド受容体 == | == カンナビノイド受容体 == | ||
23行目: | 23行目: | ||
=== 1. 逆行性シナプス伝達抑制 === | === 1. 逆行性シナプス伝達抑制 === | ||
エンドカンナビノイドの脂質メディエーターとしての働きで最も詳しく調べられているのは逆行性伝達物質としての役割である<ref><pubmed>11301031</pubmed></ref><ref><pubmed>11279497</pubmed></ref><ref><pubmed>11301030</pubmed></ref>。2-AGはシナプス後部から産生・放出されて逆行性にシナプス前終末に局在するCB1受容体を活性化する。活性化したCB1受容体は共役するGi/oタンパク質を介してシナプス前終末の電位依存性カルシウムチャネルの開口を抑制し、神経伝達物質の放出を抑制する。2-AGはシナプス後部のニューロンの脱分極によるカルシウムイオン流入、あるいはGq/11タンパク質共役型受容体の活性化によって産生される。シナプス後ニューロンで強い脱分極が起きると電位依存性カルシウムチャネルが開いてカルシウムが流入する。細胞内カルシウム濃度がマイクロモーラー以上に達すると、2-AGが産生される。また、グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体といったGq/11タンパク質共役型受容体の活性化によってPLCβを介する経路で2-AG産生が引き起こされる。この場合、細胞内カルシウム上昇は必要ない<ref><pubmed>11516402</pubmed></ref>。上記受容体以外にもオレキシン受容体、セロトニン受容体、オキシトシン受容体、プロテアーゼ活性化受容体1型、エンドセリン受容体などによってもエンドカンナビノイド産生が引き起こされる。さらに、こういった受容体の活性化と脱分極による細胞内へのカルシウム流入が同時におこると、2-AG産生が相乗的に促進される。これは、PLCβがカルシウム感受性を持つため、受容体活性化と同時に細胞内カルシウム濃度が高まると、PLCβ活性が増強するためである<ref><pubmed>15664177</pubmed></ref><ref><pubmed>16033892</pubmed></ref>。エンドカンナビノイドは脂質であるため細胞外へ放出される際、受動的に細胞膜を通り抜けると考えられる。しかしトランスポーターを介する可能性も否定できない。最近アナンダミドのトランスポーターの候補と考えられるFLATという分子が同定された<ref><pubmed>22101642</pubmed></ref>。2-AGに関してはトランスポーターの存在は現在報告されていない。2-AGによる逆行性シナプス伝達抑制はこれまでに海馬、小脳、大脳基底核、大脳皮質、扁桃体、視床下部、脳幹などの様々な脳部位で報告されており普遍的な現象であることがわかる<ref name=ref8 />。一方、アナンダミドに関してはごく一部のシナプスでのみ逆行性伝達物質として働く<ref><pubmed>21368036</pubmed></ref><ref><pubmed>22368777</pubmed></ref><ref><pubmed>22284188</pubmed></ref>。 | エンドカンナビノイドの脂質メディエーターとしての働きで最も詳しく調べられているのは逆行性伝達物質としての役割である<ref><pubmed>11301031</pubmed></ref><ref><pubmed>11279497</pubmed></ref><ref><pubmed>11301030</pubmed></ref>。2-AGはシナプス後部から産生・放出されて逆行性にシナプス前終末に局在するCB1受容体を活性化する。活性化したCB1受容体は共役するGi/oタンパク質を介してシナプス前終末の電位依存性カルシウムチャネルの開口を抑制し、神経伝達物質の放出を抑制する。2-AGはシナプス後部のニューロンの脱分極によるカルシウムイオン流入、あるいはGq/11タンパク質共役型受容体の活性化によって産生される。シナプス後ニューロンで強い脱分極が起きると電位依存性カルシウムチャネルが開いてカルシウムが流入する。細胞内カルシウム濃度がマイクロモーラー以上に達すると、2-AGが産生される。また、グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体といったGq/11タンパク質共役型受容体の活性化によってPLCβを介する経路で2-AG産生が引き起こされる。この場合、細胞内カルシウム上昇は必要ない<ref><pubmed>11516402</pubmed></ref>。上記受容体以外にもオレキシン受容体、セロトニン受容体、オキシトシン受容体、プロテアーゼ活性化受容体1型、エンドセリン受容体などによってもエンドカンナビノイド産生が引き起こされる。さらに、こういった受容体の活性化と脱分極による細胞内へのカルシウム流入が同時におこると、2-AG産生が相乗的に促進される。これは、PLCβがカルシウム感受性を持つため、受容体活性化と同時に細胞内カルシウム濃度が高まると、PLCβ活性が増強するためである<ref><pubmed>15664177</pubmed></ref><ref><pubmed>16033892</pubmed></ref>。エンドカンナビノイドは脂質であるため細胞外へ放出される際、受動的に細胞膜を通り抜けると考えられる。しかしトランスポーターを介する可能性も否定できない。最近アナンダミドのトランスポーターの候補と考えられるFLATという分子が同定された<ref><pubmed>22101642</pubmed></ref>。2-AGに関してはトランスポーターの存在は現在報告されていない。2-AGによる逆行性シナプス伝達抑制はこれまでに海馬、小脳、大脳基底核、大脳皮質、扁桃体、視床下部、脳幹などの様々な脳部位で報告されており普遍的な現象であることがわかる<ref name=ref8 />。一方、アナンダミドに関してはごく一部のシナプスでのみ逆行性伝達物質として働く<ref><pubmed>21368036</pubmed></ref><ref><pubmed>22368777</pubmed></ref><ref><pubmed>22284188</pubmed></ref>。 | ||
2-AGによる逆行性シナプス伝達抑制は短期あるいは長期にシナプス伝達を抑制する。短期のシナプス伝達抑制としてdepolarization-induced suppression of inhibition/excitation (DSI/DSE)がよく知られている。2-AGによる長期のシナプス伝達抑制に関しては、多くのシナプスで長期抑圧(long-term depression: LTD)の誘導にCB1受容体の活性化が必須であることが明らかになっている<ref name=ref20><pubmed>19575681</pubmed></ref>。多くの場合、LTD誘導刺激によって2-AGが逆行性シグナルとして働く。このようなLTDは海馬、小脳、線条体、大脳皮質などで詳しく調べられており、エンドカンナビノイドが記憶・学習、運動学習や運動制御、認知機能に重要な役割を果たしていることが示唆される<ref name=ref20 />。 | |||
=== 2. 自己抑制 === | === 2. 自己抑制 === | ||
39行目: | 41行目: | ||
== 2-AGかアナンダミドか == | == 2-AGかアナンダミドか == | ||
CB1受容体依存的に引き起こされる短期や長期のシナプス可塑性がどちらのエンドカンナビノイドによって仲介されるのかについては、以下のような判別法がある。 (1)その現象がDGLを薬理的、遺伝子的に阻害して起こらなくなる。2)MGLを薬理的、遺伝子的に阻害してその現象が促進される。以上の場合、2-AGが仲介すると判断される。一方、アナンダミドの合成経路を特異的に阻害する薬剤や遺伝子欠損動物が存在しないことから、上記(1)か(2)が否定され、かつFAAHを阻害するとその現象が促進される場合、アナンダミドによって仲介されると判断される。 | CB1受容体依存的に引き起こされる短期や長期のシナプス可塑性がどちらのエンドカンナビノイドによって仲介されるのかについては、以下のような判別法がある。 | ||
(1)その現象がDGLを薬理的、遺伝子的に阻害して起こらなくなる。2)MGLを薬理的、遺伝子的に阻害してその現象が促進される。以上の場合、2-AGが仲介すると判断される。一方、アナンダミドの合成経路を特異的に阻害する薬剤や遺伝子欠損動物が存在しないことから、上記(1)か(2)が否定され、かつFAAHを阻害するとその現象が促進される場合、アナンダミドによって仲介されると判断される。 | |||
== 参考文献 == | == 参考文献 == | ||
<references /> (執筆者:橋本谷祐輝、狩野方伸 担当編集委員:尾藤晴彦) | <references /> (執筆者:橋本谷祐輝、狩野方伸 担当編集委員:尾藤晴彦) |
回編集