「逆行性伝達物質」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
脂質のなかではエンドカンナビノイドが最も詳しく調べられている逆行性伝達物質である<ref name=ref2><pubmed> 19126760 </pubmed></ref>。エンドカンナビノイドによる逆行性シナプス伝達はシナプス前終末に局在するカンナビノイド受容体I型(CB1)の活性化を介して引き起こされる。脳の非常に広い範囲の多くのシナプスでこの逆行性シナプス伝達が報告されている。詳しくは後述。
脂質のなかではエンドカンナビノイドが最も詳しく調べられている逆行性伝達物質である<ref name=ref2><pubmed> 19126760 </pubmed></ref>。エンドカンナビノイドによる逆行性シナプス伝達はシナプス前終末に局在するカンナビノイド受容体I型(CB1)の活性化を介して引き起こされる。脳の非常に広い範囲の多くのシナプスでこの逆行性シナプス伝達が報告されている。詳しくは後述。


  アラキドン酸が海馬において逆行性伝達物質として働き長期増強(long-term potentiation: LTP)や長期抑圧(long-term depression: LTD)を引き起こすことが提案された<ref><pubmed> 2571939 </pubmed></ref><ref><pubmed> 8606806 </pubmed></ref>。しかし、アラキドン酸を逆行性伝達物質と考えるには十分な実験的証拠がなく疑問視されている<ref><pubmed> 9457171 </pubmed></ref>。現在ではアラキドン酸自身ではなく、その代謝産物が逆行性伝達物質として働くことが考えられている(Sang and Chen, 2006)。海馬CA1においてCOX-2によってアラキドン酸からプロスタグランジンE2が作られ、それが逆行性伝達物質として興奮性シナプス前終末に存在するプロスタグランジンE2受容体を活性化し、シナプス伝達を促進させることが報告されている(Sang et al., 2005)
  アラキドン酸が海馬において逆行性伝達物質として働き長期増強(long-term potentiation: LTP)や長期抑圧(long-term depression: LTD)を引き起こすことが提案された<ref><pubmed> 2571939 </pubmed></ref><ref><pubmed> 8606806 </pubmed></ref>。しかし、アラキドン酸を逆行性伝達物質と考えるには十分な実験的証拠がなく疑問視されている<ref><pubmed> 9457171 </pubmed></ref>。現在ではアラキドン酸自身ではなく、その代謝産物が逆行性伝達物質として働くことが考えられている<ref><pubmed> 16957004 </pubmed></ref>。海馬CA1においてCOX-2によってアラキドン酸からプロスタグランジンE2が作られ、それが逆行性伝達物質として興奮性シナプス前終末に存在するプロスタグランジンE2受容体を活性化し、シナプス伝達を促進させることが報告されている<ref><pubmed> 16251433 </pubmed></ref>


  エイコサノイドの一種である12-(S)-HPETEが海馬CA1の抑制性ニューロンから放出され興奮性シナプス前終末に存在するTRPV1を活性化しLTDを誘導することが報告されている(Gibson et al., 2008)
  エイコサノイドの一種である12-(S)-HPETEが海馬CA1の抑制性ニューロンから放出され興奮性シナプス前終末に存在するTRPV1を活性化しLTDを誘導することが報告されている<ref><pubmed> 18341994 </pubmed></ref>


===気体分子===
===気体分子===
NO(一酸化窒素)はセカンドメッセンジャーとして働くことが知られているが、特に海馬のLTP誘導において逆行性伝達物質として働くことが報告されている(Dawson and Snyder, 1994; Holscher, 1997)。NMDA受容体を介して流入したカルシウムがNO合成酵素を活性化することによってL-アルギニンからNOがシナプス後部で作られる。細胞外へと放出されたNOはシナプス前終末の内部に入り、可溶性グアニル酸シクラーゼを活性化しcGMP産生とそれに引き続きcGMP依存性プロテインキナーゼの活性化を引き起こす。その結果、神経伝達物質の放出が促進される。海馬以外にも例えば腹側被蓋野(Nugent et al., 2007)、視床下部(Di et al., 2009)、大脳皮質(Hardingham and Fox, 2006)、脊髄(Fenselau et al., 2011)などでNOによる逆行性シナプス伝達が報告されている。
NO(一酸化窒素)はセカンドメッセンジャーとして働くことが知られているが、特に海馬のLTP誘導において逆行性伝達物質として働くことが報告されている<ref><pubmed> 8083727 </pubmed></ref><ref><pubmed> 9223222 </pubmed></ref>。NMDA受容体を介して流入したカルシウムがNO合成酵素を活性化することによってL-アルギニンからNOがシナプス後部で作られる。細胞外へと放出されたNOはシナプス前終末の内部に入り、可溶性グアニル酸シクラーゼを活性化しcGMP産生とそれに引き続きcGMP依存性プロテインキナーゼの活性化を引き起こす。その結果、神経伝達物質の放出が促進される。海馬以外にも例えば腹側被蓋野<ref><pubmed> 17460674 </pubmed></ref>、視床下部<ref><pubmed> 19144839 </pubmed></ref>、大脳皮質<ref><pubmed> 16837587 </pubmed></ref>、脊髄<ref><pubmed> 22131400 </pubmed></ref>などでNOによる逆行性シナプス伝達が報告されている。
    NOが順行性伝達物質としても働くことが、特に小脳のLTDでよく調べられている(Garthwaite, 2008)。小脳プルキンエ細胞に入力する興奮性の平行線維終末からNOが放出され(Shibuki and Kimura, 1997)シナプス後部に入り、可溶性グアニル酸シクラーゼを活性化する。その結果、cGMP/cGMP依存性プロテインキナーゼのカスケードが活性化しG-substrateをリン酸化する(Endo et al., 1999)。リン酸化したG-substrateはホスファターゼの阻害剤として働き、別経路で活性化されたプロテインキナーゼCと合わせて、最終的にAMPA受容体のリン酸化およびエンドサイトーシスを促進する方向へ向かう。
    NOが順行性伝達物質としても働くことが、特に小脳のLTDでよく調べられている(Garthwaite, 2008)。小脳プルキンエ細胞に入力する興奮性の平行線維終末からNOが放出され(Shibuki and Kimura, 1997)シナプス後部に入り、可溶性グアニル酸シクラーゼを活性化する。その結果、cGMP/cGMP依存性プロテインキナーゼのカスケードが活性化しG-substrateをリン酸化する(Endo et al., 1999)。リン酸化したG-substrateはホスファターゼの阻害剤として働き、別経路で活性化されたプロテインキナーゼCと合わせて、最終的にAMPA受容体のリン酸化およびエンドサイトーシスを促進する方向へ向かう。
     一酸化炭素も逆行性伝達物質として働くことが示唆されているが(Bacskai et al., 1993; Dawson and Snyder, 1994)まだそれを支持する十分な証拠は揃っていない。
     一酸化炭素も逆行性伝達物質として働くことが示唆されているが(Bacskai et al., 1993; Dawson and Snyder, 1994)まだそれを支持する十分な証拠は揃っていない。
49

回編集

案内メニュー