「In situハイブリダイゼーション法」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
33行目: 33行目:
の3種類がよく用いられている。DNAオリゴプローブは、DNA合成装置で合成する。B, Cにおいては、プローブ合成のための[[wikipedia:ja:鋳型|鋳型]]DNAが必要である。RNA-RNAハイブリッドが3者の中で最も安定であり、現在RNAプローブを用いる方法が一般的である。合成したRNAが分解されないように細心の注意を払う。他に[[wikipedia:ja:locked nucleic acid|locked nucleic acid]] (LNA)(後述)や[[wikipedia:ja:ペプチド核酸|ペプチド核酸]]をプローブとして用いる方法がある。プローブを可視化のために標識する方法には主に次の2つの方法がある。
の3種類がよく用いられている。DNAオリゴプローブは、DNA合成装置で合成する。B, Cにおいては、プローブ合成のための[[wikipedia:ja:鋳型|鋳型]]DNAが必要である。RNA-RNAハイブリッドが3者の中で最も安定であり、現在RNAプローブを用いる方法が一般的である。合成したRNAが分解されないように細心の注意を払う。他に[[wikipedia:ja:locked nucleic acid|locked nucleic acid]] (LNA)(後述)や[[wikipedia:ja:ペプチド核酸|ペプチド核酸]]をプローブとして用いる方法がある。プローブを可視化のために標識する方法には主に次の2つの方法がある。


# [[wikipedia:ja:酵素抗体法|酵素抗体法]]または[[wikipedia:ja:蛍光抗体法|蛍光抗体法]:適当な[[wikipedia:ja:抗原|抗原]]([[wikipedia:ja:ジゴキシゲニン|ジゴキシゲニン]] digoxigenin [DIG], [[wikipedia:ja:フルオレセイン|フルオレセイン]] fluorescein, [[wikipedia:ja:ビオチン|ビオチン]] biotinなど)の結合した[[wikipedia:ja:ヌクレオチド|ヌクレオチド]]を用いてプローブを標識し、その抗原に対する[[wikipedia:ja:抗体|抗体]]を用いて発色または蛍光により可視化する。<br>
# [[wikipedia:ja:酵素抗体法|酵素抗体法]]または[[wikipedia:ja:蛍光抗体法|蛍光抗体法]]:適当な[[wikipedia:ja:抗原|抗原]]([[wikipedia:ja:ジゴキシゲニン|ジゴキシゲニン]] (digoxigenin, DIG), [[wikipedia:ja:フルオレセイン|フルオレセイン]] (fluorescein), [[wikipedia:ja:ビオチン|ビオチン]] (biotin)など)の結合した[[wikipedia:ja:ヌクレオチド|ヌクレオチド]]を用いてプローブを標識し、その抗原に対する[[wikipedia:ja:抗体|抗体]]を用いて発色または蛍光により可視化する。<br>
# [[wikipedia:ja:放射性同位元素|放射性同位元素]](radioisotope: RI)を用いて、[[wikipedia:ja:オートラジオグラフィー|オートラジオグラフィー]]法により可視化する。
# [[wikipedia:ja:放射性同位元素|放射性同位元素]](radioisotope)を用いて、[[wikipedia:ja:オートラジオグラフィー|オートラジオグラフィー]]法により可視化する。


===ハイブリダイゼーション===
===ハイブリダイゼーション===
 DNAの[[wikipedia:ja:二重らせん|二重らせん]]構造は、塩基対A:Tに形成される2つの[[wikipedia:ja:水素結合|水素結合]]と塩基対G:Cに形成される3つの水素結合により安定に保たれている。この二本鎖を一本鎖にする方法の1つとして、熱変性がある。二重らせんDNA溶液の温度を高くしながら、DNA溶液の260 nmの[[wikipedia:ja:吸光度|吸光度]]A260を測定すると、しだいにA260は高くなる。これはDNAの二重らせんが壊れ、一本鎖になるためで、この温度による吸光度の変化を表す曲線をDNAの[[wikipedia:ja:融解曲線|融解曲線]]とよんでいる。この現象は、らせんが消失して塩基間の相互作用が少なくなるため、塩基の光吸収の効率が変化し(深色効果)、各塩基の[[wikipedia:ja:分子吸光係数|分子吸光係数]]が高くなるために生じる。温度の低い時のDNAをヘリックス100%とし、高温での吸光度が一定になる状態でヘリックス0%と仮定すると、ヘリックス50%になる温度([[wikipedia:ja:融解温度|融解温度]] melting temperature: Tm)を決定することができる。
 DNAの[[wikipedia:ja:二重らせん|二重らせん]]構造は、塩基対A:Tに形成される2つの[[wikipedia:ja:水素結合|水素結合]]と塩基対G:Cに形成される3つの水素結合により安定に保たれている。この二本鎖を一本鎖にする方法の1つとして、熱変性がある。二重らせんDNA溶液の温度を高くしながら、DNA溶液の260 nmの[[wikipedia:ja:吸光度|吸光度]]A260を測定すると、しだいにA260は高くなる。これはDNAの二重らせんが壊れ、一本鎖になるためで、この温度による吸光度の変化を表す曲線をDNAの[[wikipedia:ja:融解曲線|融解曲線]]とよんでいる。この現象は、らせんが消失して塩基間の相互作用が少なくなるため、塩基の光吸収の効率が変化し(深色効果)、各塩基の[[wikipedia:ja:分子吸光係数|分子吸光係数]]が高くなるために生じる。温度の低い時のDNAをヘリックス100%とし、高温での吸光度が一定になる状態でヘリックス0%と仮定すると、ヘリックス50%になる温度([[wikipedia:ja:融解温度|融解温度]] (melting temperature: Tm))を決定することができる。


 Tmは二重らせんの安定度の目安になる。非常に安定ならせんであれば、Tmは80〜90℃になる。逆に不安定であれば、30〜40℃になる。TmはGC塩基対の含量、核酸の長さ、核酸の塩基対のミスマッチなどに依存し、DNA溶液のイオン強度(塩濃度)や組成により変化する。Tmに関する経験的な式は、例えば、RNA-RNAハイブリッドの場合、
 Tmは二重らせんの安定度の目安になる。非常に安定ならせんであれば、Tmは80〜90℃になる。逆に不安定であれば、30〜40℃になる。TmはGC塩基対の含量、核酸の長さ、核酸の塩基対のミスマッチなどに依存し、DNA溶液のイオン強度(塩濃度)や組成により変化する。Tmに関する経験的な式は、例えば、RNA-RNAハイブリッドの場合、

案内メニュー