16,039
回編集
細編集の要約なし |
細 (→原理と適用例) |
||
5行目: | 5行目: | ||
== 原理と適用例 == | == 原理と適用例 == | ||
遺伝子から転写されたmRNAの量は、遺伝子機能の量的な面を反映していると考えられるため、遺伝子の発現量から機能を推測しようというのが、この遺伝子発現解析の基本的な概念である。本技法は、1992年にLiangとPardeeにより、mRNAレベルで[[wikipedia:ja:真核生物|真核細胞]]の試料間で、遺伝子発現の同定比較を行うことできる技術として発表された<ref name=Liang_Pardee_Science></ref><ref name=Liang_Biotech></ref>。形態的、遺伝学的、または実験的処置等に異なる試料間で、どの遺伝子発現に変化・差異があるかを見出すことができる。 | |||
例えば、物質Aの添加により遺伝子Bの発現の増加/減少が見出された場合、この遺伝子Bの発現が物質Aにより誘導/抑制されていると考えらる。防御蛋白質や阻害作用の解析などに多くの適用が考えられる。脳神経科学領域では、ある[[学習]]課題が成立した動物個体としていない動物個体の細胞間で、発現に差のある遺伝子を同定することで、その学習に関与する遺伝子群が同定された適応例がある<ref><pubmed>10531455</pubmed></ref> <ref><pubmed>11168596</pubmed></ref>。比較的感度が良く、実験操作も簡便に行うことができ、また必要に応じて、3試料以上の間での比較に拡張することも可能である。[[Image:DD-fig1.jpg|thumb|250px|図1 ディファレンシャルディスプレイ法の適応例]] | 例えば、物質Aの添加により遺伝子Bの発現の増加/減少が見出された場合、この遺伝子Bの発現が物質Aにより誘導/抑制されていると考えらる。防御蛋白質や阻害作用の解析などに多くの適用が考えられる。脳神経科学領域では、ある[[学習]]課題が成立した動物個体としていない動物個体の細胞間で、発現に差のある遺伝子を同定することで、その学習に関与する遺伝子群が同定された適応例がある<ref><pubmed>10531455</pubmed></ref><ref><pubmed>11168596</pubmed></ref>。比較的感度が良く、実験操作も簡便に行うことができ、また必要に応じて、3試料以上の間での比較に拡張することも可能である。[[Image:DD-fig1.jpg|thumb|250px|図1 ディファレンシャルディスプレイ法の適応例]] | ||
原法では、検出方法として[[wikipedia:ja:放射性同位元素|放射性同位元素]](radioisotope, RI)を用いていた(RI-DD法)が<ref name=Liang_Pardee_Science></ref>、その後、蛍光標識された[[wikipedia:ja:プライマー (生物)|プライマー]]を用いて検出する「[[wikipedia:ja:蛍光|蛍光]]ディファレンシャルディスプレイ (FDD) 法」が開発され、検出感度、操作性や再現性が高められた<ref name=Liang_Biotech></ref><ref>'''伊藤隆司'''<br>Differential Display<br>実験医学別冊 新遺伝子工学ハンドブック改訂第4版(村松正實、 山本雅編)羊土社: 2003, pp. 60-64 (なお、第5版から本項目は削除されている)</ref>。 | 原法では、検出方法として[[wikipedia:ja:放射性同位元素|放射性同位元素]](radioisotope, RI)を用いていた(RI-DD法)が<ref name=Liang_Pardee_Science></ref>、その後、蛍光標識された[[wikipedia:ja:プライマー (生物)|プライマー]]を用いて検出する「[[wikipedia:ja:蛍光|蛍光]]ディファレンシャルディスプレイ (FDD) 法」が開発され、検出感度、操作性や再現性が高められた<ref name=Liang_Biotech></ref><ref>'''伊藤隆司'''<br>Differential Display<br>実験医学別冊 新遺伝子工学ハンドブック改訂第4版(村松正實、 山本雅編)羊土社: 2003, pp. 60-64 (なお、第5版から本項目は削除されている)</ref>。 |