「視差エネルギーモデル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
31行目: 31行目:
[[Image:DisparityEnergyModel.png|thumb|400px|<b>図3 視差エネルギーモデル</b><br />]]  
[[Image:DisparityEnergyModel.png|thumb|400px|<b>図3 視差エネルギーモデル</b><br />]]  


&nbsp; 単純型細胞の両眼視差選択性は、視覚刺激の(単眼)位置やコントラストに依存するのにたいし、複雑型細胞の両眼視差選択性はそれらに依存せず一定である。このような複雑型細胞の両眼視差選択性を作り出す受容野内部機構として提唱されたモデルが、視差エネルギーモデルであり、図3のように表される<ref name="ref1" /><ref name="ref14"><pubmed> 9212245  </pubmed></ref>。このモデルにおいて、複雑型細胞(Cの記号で表す)は、両眼性単純型細胞をモデル化した4つのサブブユニット(S1, S2, S3, S4)が出す信号を線形加算し、外部に出力する。4つのサブユニットのガボールフィルターの位相は、右眼、左眼のそれぞれにおいて90度ずつ異なっている。また各サブニットにおいて、左右ガボールフィルターの両眼間の位相差は同一である。この両眼位相差を(4つのサブユニットで同一に保ちながら)変化させることで、モデルの両眼視差選択性を変化させることができる。<br>&nbsp; 刺激の左右の像が、複雑型細胞の最適な両眼視差をもつ場合(図3の場合はゼロ視差)、受容野内部のどの場所に刺激がくる場合でも、4つのサブユニットのいずれかが強く応答する。図3の場合、明るい刺激が受容野内部の中心付近に呈示される場合にはS1が、左部分に呈示される場合にはS2が、右部分に呈示される場合にはS4がそれぞれゼロ視差に強く応答する。また、背景より暗い刺激が受容野の中心付近、右部分、左部分に呈示される場合には、S4、S3、S2がそれぞれゼロ視差に強く応答する。このため、複雑型細胞は、受容野内部の刺激の位置やコントラストに影響されずに、同じ両眼視差選択性を示すようになり、両眼視差の検出器としては理想的な振る舞いをする。<br>  
&nbsp; 単純型細胞の両眼視差選択性は、視覚刺激の(単眼)位置やコントラストに依存するのにたいし、複雑型細胞の両眼視差選択性はそれらに依存せず一定である。このような複雑型細胞の両眼視差選択性を作り出す受容野内部機構として提唱されたモデルが、視差エネルギーモデルであり、図3のように表される<ref name="ref1" /><ref name="ref13"><pubmed> 9212245  </pubmed></ref>。このモデルにおいて、複雑型細胞(Cの記号で表す)は、両眼性単純型細胞をモデル化した4つのサブブユニット(S1, S2, S3, S4)が出す信号を線形加算し、外部に出力する。4つのサブユニットのガボールフィルターの位相は、右眼、左眼のそれぞれにおいて90度ずつ異なっている。また各サブニットにおいて、左右ガボールフィルターの両眼間の位相差は同一である。この両眼位相差を(4つのサブユニットで同一に保ちながら)変化させることで、モデルの両眼視差選択性を変化させることができる。<br>&nbsp; 刺激の左右の像が、複雑型細胞の最適な両眼視差をもつ場合(図3の場合はゼロ視差)、受容野内部のどの場所に刺激がくる場合でも、4つのサブユニットのいずれかが強く応答する。図3の場合、明るい刺激が受容野内部の中心付近に呈示される場合にはS1が、左部分に呈示される場合にはS2が、右部分に呈示される場合にはS4がそれぞれゼロ視差に強く応答する。また、背景より暗い刺激が受容野の中心付近、右部分、左部分に呈示される場合には、S4、S3、S2がそれぞれゼロ視差に強く応答する。このため、複雑型細胞は、受容野内部の刺激の位置やコントラストに影響されずに、同じ両眼視差選択性を示すようになり、両眼視差の検出器としては理想的な振る舞いをする。<br>  


== 視差エネルギーモデルの拡張による種々の両眼視差の検出機構  ==
== 視差エネルギーモデルの拡張による種々の両眼視差の検出機構  ==
37行目: 37行目:
=== 相対視差  ===
=== 相対視差  ===


ここまで述べてきた両眼視差は、注視点を基準とした座標系での左右像の位置のずれとして定義されたものであり、絶対視差(absolute disparity)ともよばれるものである。これにたいし、2つの刺激がもつ絶対視差の差異のことを相対視差とよぶ。視覚系は、隣接する対象の視差を非常に精度よく弁別できるが、これには、輻輳の影響をうけない相対視差が利用されていると考えられている。<br>サルV1野の細胞の大部分は絶対視差をコードしていることが示されている。これにたいし、V1野から入力を受けるV2野やV4野には、相対視差に選択性応答を示す細胞が一定の割合で存在し、このような応答は視差エネルギーモデルを拡張したモデルで説明されることが示された。この拡張モデルでは、異なる位置に受容野をもち、同じ絶対視差に選択性をもつ視差エネルギーモデルの出力が加算し2乗される。このような信号がさまざまな絶対視差に選択性をもつ視差エネルギーモデルから集められると、統合された信号は相対視差に選択性を示す。<br>  
ここまで述べてきた両眼視差は、注視点を基準とした座標系での左右像の位置のずれとして定義されたものであり、絶対視差(absolute disparity)ともよばれるものである。これにたいし、2つの刺激がもつ絶対視差の差異のことを相対視差とよぶ。視覚系は、隣接する対象の視差を非常に精度よく弁別できるが、これには、輻輳の影響をうけない相対視差が利用されていると考えられている。<br>サルV1野の細胞の大部分は絶対視差をコードしていることが示されている。これにたいし、V1野から入力を受けるV2野やV4野には、相対視差に選択性応答を示す細胞が一定の割合で存在し<ref name="ref14"><pubmed> 11967544 </pubmed></ref><ref name="ref15"><pubmed> 17507498 </pubmed></ref>、このような応答は視差エネルギーモデルを拡張したモデルで説明されることが示された。この拡張モデルでは、異なる位置に受容野をもち、同じ絶対視差に選択性をもつ視差エネルギーモデルの出力が加算し2乗される。このような信号がさまざまな絶対視差に選択性をもつ視差エネルギーモデルから集められると、統合された信号は相対視差に選択性を示す<ref name="ref14"></ref>。<br>  


=== 2次特徴の両眼視差  ===
=== 2次特徴の両眼視差  ===


視覚系が利用可能な両眼視差のうち、最も強力なものは輝度エッジで定義される両眼視差である。しかし、テクスチャーエッジ(例えば、縦縞と横縞の境界)などの2次特徴で定義される両眼視差からも奥行き知覚は可能である。このような2次特徴の両眼視差に選択性をもつ細胞がネコの初期視覚野に存在している。2次特徴の両眼視差は、両眼視差エネルギーモデルの各サブユニットの左右受容野を、通常の線形フィルターではなく、”フィルター-&gt;整流-&gt;フィルター”というカスケード型フィルターで置き換えることで検出できる。<br>  
視覚系が利用可能な両眼視差のうち、最も強力なものは輝度エッジで定義される両眼視差である。しかし、テクスチャーエッジ(例えば、縦縞と横縞の境界)などの2次特徴で定義される両眼視差からも奥行き知覚は可能である。このような2次特徴の両眼視差に選択性をもつ細胞がネコの初期視覚野に存在している。2次特徴の両眼視差は、両眼視差エネルギーモデルの各サブユニットの左右受容野を、通常の線形フィルターではなく、『フィルター -> 整流 -> フィルター』というカスケード型フィルターで置き換えることで検出できる<ref name="ref16"><pubmed> 16624957 </pubmed></ref>。<br>  
 
 


== 視差エネルギーモデルと両眼対応点問題  ==
== 視差エネルギーモデルと両眼対応点問題  ==


 左右の網膜像をもとに刺激の両眼視差を正しく検出するためには、対となるものを正しく対応づけることが不可欠であり、この課題を対応点問題という。正しく対応づけられたペアをコレクトマッチ、誤って対応づけられたペアをフォールスマッチと呼ぶ。多数のドットが密に並ぶ状況では、フォールスマッチが、細胞の受容野内部に入る状況は頻繁に起こり、視差エネルギーモデルはフォールスマッチにも応答する。しかしながら、われわれの視覚系は、コレクトマッチのみに基づいて正しく奥行きを知覚できる。したがって、視差エネルギーモデルが応答するフォールスマッチには応答せず、コレクトマッチにのみ応じる機構が必要となってくる。 <br>  V1野細胞は、視差エネルギーモデルの予測どおりフォールスマッチにも応答する。一方でサルV4野やIT野などの腹側視覚経路の細胞はフォールスマッチに対応する応答が大きく減弱することが示された。このことは視差情報がこの経路に沿って処理されるなかで、対応点問題が解決されている可能性を示唆している。<br><br>  
 左右の網膜像をもとに刺激の両眼視差を正しく検出するためには、対となるものを正しく対応づけることが不可欠であり、この課題を対応点問題という。正しく対応づけられたペアをコレクトマッチ、誤って対応づけられたペアをフォールスマッチと呼ぶ。多数のドットが密に並ぶ状況では、フォールスマッチが細胞の受容野内部に入る状況は頻繁に起こり、視差エネルギーモデルはフォールスマッチにも応答する。しかしながら、われわれの視覚系はコレクトマッチのみに基づいて正しく奥行きを知覚できる。したがって、視差エネルギーモデルが応答するフォールスマッチには応答せず、コレクトマッチにのみ応じる機構が必要となってくる。 <br>  V1野細胞は、視差エネルギーモデルの予測どおりフォールスマッチにも応答する<ref name="ref17"><pubmed> 9212245  </pubmed></ref><ref name="ref18"><pubmed> 9305841  </pubmed></ref><ref name="ref19"><pubmed> 10844045  </pubmed></ref>。一方でサルV4野やIT野などの腹側視覚経路の細胞はフォールスマッチに対応する応答が大きく減弱することが示された<ref name="ref20"><pubmed> 15371518  </pubmed></ref><ref name="ref21"><pubmed> 12597865  </pubmed></ref>。このことは視差情報がこの経路に沿って処理されるなかで、対応点問題が解決されている可能性を示唆している。<br>
 
<br>  


== 参考文献  ==
== 参考文献  ==
197

回編集

案内メニュー