「視差エネルギーモデル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
<br>  
<br>  


 奥行きや立体構造を知るための手がかりである両眼視差は、網膜からの視覚経路において第一次視覚野(V1野)ではじめて検出される。この両眼視差の検出に特化したV1野細胞の受容野モデルが視差エネルギーモデルである。現在、視差エネルギーモデルは脳における両眼視差検出機構の標準モデルであり、両眼立体視の神経機構全体を考える上で強い影響力をもっている。1990年カリフォルニア大学バークレー校の大澤らによって提案された<ref name="ref1"><pubmed> 2396096  </pubmed></ref>。  
 奥行きや立体構造を知るための手がかりである両眼視差は、網膜からの視覚経路において第一次視覚野(V1野)ではじめて検出される。この両眼視差の検出に特化したV1野細胞の受容野モデルが視差エネルギーモデルである。現在、視差エネルギーモデルは脳における両眼視差検出機構の標準モデルであり、両眼立体視の神経機構全体を考える上で最も重要な理論の1つである。1990年カリフォルニア大学バークレー校の大澤らによって提案された<ref name="ref1"><pubmed> 2396096  </pubmed></ref>。  


== 両眼視差  ==
== 両眼視差  ==


[[Image:BinocularDisparity.png|thumb|460px|<b>図1 両眼視差</b> 両眼視差. A,2つの眼で黒丸を注視するとき、さまざまな奥行きにある刺激の網膜投影像。B, 左右の網膜を平にして、上下に並べたもの。注視している黒丸の像は、網膜で視力の最も高い場所である中心窩に投影される。注視している点(注視点という)と同じ奥行きにある刺激(青)の左右の像は、中心窩を基準とした網膜座標上の同じ位置に投影され、その両眼視差はゼロとなる。一方、注視点と異なる奥行き面上にある刺激(赤、緑)は、左右網膜の異なる位置に投影され、ゼロ以外の両眼視差をもつ。手前にある刺激(緑)と、奥にある刺激(赤)の両眼視差の方向は逆になり、前者を交差視差、後者を非交差視差とよんでいる。]]  
[[Image:BinocularDisparity.png|thumb|450px|<b>図1 両眼視差</b> 両眼視差. A,2つの眼で黒丸を注視するとき、さまざまな奥行きにある刺激の網膜投影像。B, 左右の網膜を平にして、上下に並べたもの。注視している黒丸の像は、網膜で視力の最も高い場所である中心窩に投影される。注視している点(注視点という)と同じ奥行きにある刺激(青)の左右の像は、中心窩を基準とした網膜座標上の同じ位置に投影され、その両眼視差はゼロとなる。一方、注視点と異なる奥行き面上にある刺激(赤、緑)は、左右網膜の異なる位置に投影され、ゼロ以外の両眼視差をもつ。手前にある刺激(緑)と、奥にある刺激(赤)の両眼視差の方向は逆になり、前者を交差視差、後者を非交差視差とよんでいる。]]  


 われわれが両眼でものをみるとき、2つの眼が注視している点(注視点)と同じ奥行きにある刺激は、左右の網膜上の同じ位置に投影される(=いずれの網膜においても、網膜の中心である中心窩から同じ方向、量だけ離れた位置に投影される)のにたいし、注視点と異なる奥行きにある刺激は水平方向にずれた位置に投影される(図1参照)。この網膜像の位置のずれのことを両眼視差という(単に視差ともいう)。両眼視差の量は刺激と注視点の奥行き距離に比例する。また刺激が注視点より手前にある場合と、奥にある場合とで両眼視差の方向(符号)は逆になる。慣習上、前者にはマイナス、後者にはプラスの符号をつけ、前者を交差視差 、後者を非交差視差とよぶ。<br>  
 われわれが両眼でものをみるとき、2つの眼が注視している点(注視点)と同じ奥行きにある刺激は、左右の網膜上の同じ位置に投影される(=いずれの網膜においても、網膜の中心である中心窩から同じ方向、量だけ離れた位置に投影される)のにたいし、注視点と異なる奥行きにある刺激は水平方向にずれた位置に投影される(図1参照)。この網膜像の位置のずれのことを両眼視差という(単に視差ともいう)。両眼視差の量は刺激と注視点の奥行き距離に比例する。また刺激が注視点より手前にある場合と、奥にある場合とで両眼視差の方向(符号)は逆になる。慣習上、前者にはマイナス、後者にはプラスの符号をつけ、前者を交差視差 、後者を非交差視差とよぶ。<br>  
197

回編集

案内メニュー