197
回編集
Hirokitanaka (トーク | 投稿記録) 細編集の要約なし |
Hirokitanaka (トーク | 投稿記録) 細編集の要約なし |
||
9行目: | 9行目: | ||
== 両眼視差 == | == 両眼視差 == | ||
[[Image:BinocularDisparity.png|thumb| | [[Image:BinocularDisparity.png|thumb|475px|<b>図1 両眼視差</b> 両眼視差. A,2つの眼で黒丸を注視するとき、さまざまな奥行きにある刺激の網膜投影像。B, 左右の網膜を平にして、上下に並べたもの。注視している点(注視点という)に位置する黒丸の像は、網膜で視力の最も高い場所である中心窩に投影される。注視点と同じ奥行きにある刺激(青)の左右の像は、中心窩を基準とした網膜座標上の同じ位置に投影され、その両眼視差はゼロとなる。一方、注視点と異なる奥行き面上にある刺激(赤、緑)は、左右網膜の異なる位置に投影され、ゼロ以外の両眼視差をもつ。手前にある刺激(緑)と、奥にある刺激(赤)の両眼視差の方向は逆になり、前者を交差視差、後者を非交差視差とよんでいる。]] | ||
われわれが両眼でものをみるとき、2つの眼が注視している点(注視点)と同じ奥行きにある刺激は、左右の網膜上の同じ位置に投影される(=いずれの網膜においても、網膜の中心である中心窩から同じ方向、量だけ離れた位置に投影される)のにたいし、注視点と異なる奥行きにある刺激は水平方向にずれた位置に投影される(図1参照)。この網膜像の位置のずれのことを両眼視差という(単に視差ともいう)。両眼視差の量は刺激と注視点の奥行き距離に比例する。また刺激が注視点より手前にある場合と、奥にある場合とで両眼視差の方向(符号)は逆になる。慣習上、前者にはマイナス、後者にはプラスの符号をつけ、前者を交差視差 、後者を非交差視差とよぶ。<br> | われわれが両眼でものをみるとき、2つの眼が注視している点(注視点)と同じ奥行きにある刺激は、左右の網膜上の同じ位置に投影される(=いずれの網膜においても、網膜の中心である中心窩から同じ方向、量だけ離れた位置に投影される)のにたいし、注視点と異なる奥行きにある刺激は水平方向にずれた位置に投影される(図1参照)。この網膜像の位置のずれのことを両眼視差という(単に視差ともいう)。両眼視差の量は刺激と注視点の奥行き距離に比例する。また刺激が注視点より手前にある場合と、奥にある場合とで両眼視差の方向(符号)は逆になる。慣習上、前者にはマイナス、後者にはプラスの符号をつけ、前者を交差視差 、後者を非交差視差とよぶ。<br> | ||
23行目: | 23行目: | ||
== 単純型細胞の受容野構造と両眼視差選択性 == | == 単純型細胞の受容野構造と両眼視差選択性 == | ||
[[Image:BinocularSimple.png|thumb|475px|<b>図2 単純型細胞の受容野構造と両眼視差選択性</b> A. 単純型細胞の両眼受容野構造. | [[Image:BinocularSimple.png|thumb|475px|<b>図2 単純型細胞の受容野構造と両眼視差選択性</b> A. 単純型細胞の両眼受容野構造. 左右の受容野のx-y2次元構造とx-方向の1次元断面図を示している。これらの受容野を持つ細胞を丸で表し、その下の図で半波整流機構を表している。B-D. 単純型細胞の視差選択性。受容野の上の四角は、明るいスポット刺激の左右網膜像を表し、この細胞が最大応答を示すように配置されている。B. ゼロ視差を最適とする受容野構造. C. 位置モデルにより非交差視差に適刺激とする受容野。D. 位相モデルにより非交差視差を適刺激とする受容野。<br />]] | ||
単純型細胞細胞は、明るい刺激に応答するON領域と暗い刺激に応答するOFF領域が分離した受容野をもつ。受容野の空間構造はガボール関数で近似できる。 | |||
多くの単純型細胞は両眼に受容野をもつ。これら両眼性単純型細胞の応答は、両眼からの入力を左右の受容野で重みづけをして足し合わせたのち、さらに半波整流をしたものとして表すことができる(図2A)。 | 多くの単純型細胞は両眼に受容野をもつ。これら両眼性単純型細胞の応答は、両眼からの入力を左右の受容野で重みづけをして足し合わせたのち、さらに半波整流をしたものとして表すことができる(図2A)。 | ||
単純型細胞が視差選択性をもつ機構は、大きく分けて2種類ある<ref name="ref9"><pubmed> 2067576 </pubmed></ref><ref name="ref12"><pubmed> 11784743 </pubmed></ref> | 単純型細胞が視差選択性をもつ機構は、大きく分けて2種類ある<ref name="ref9"><pubmed> 2067576 </pubmed></ref><ref name="ref12"><pubmed> 11784743 </pubmed></ref>。1つは、左右の受容野の形は同じであるが、その位置がずれることにより視差選択性が生じる機構で「位置モデル」と呼ばれている。細胞は受容野の位置のずれと等しい両眼視差に最も強く応答する。たとえば、図2Bの受容野をもつ細胞はゼロ視差に最も強く応答し、図2Cの受容野をもつ細胞は非交差視差に最も強く応答する。第2の機構は、受容野の(中心)位置は同じであるが、受容野の形(位相)が異なることにより両眼視差選択性が生じる機構で、「位相モデル」とよばれている(図2D)。実際の細胞では「位置タイプ」あるいは「位相モデル」以外に、位置と位相の両方がずれた受容野をもつもがもあり、これらは「ハイブリッドモデル」とよばれている。様々な機構がある意義については、これら3種類の機構を利用することで対応点問題(後述)がより精度よく解けることが理論的に示されている<ref name="read"><pubmed> 17828262 </pubmed></ref>。<br> 多くの両眼性単純型細胞は、両眼視差によって大きな応答の変動を示す。しかし細胞が最大応答する両眼視差は、刺激の左右投影像の単眼上での位置や、刺激のコントラストにも依存するという問題がある。このような問題のため、通常、単純型細胞がV1野の両眼視差検出器のモデルとして取り扱われることはない。<br> | ||
<br> | <br> |
回編集