「核内受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
英語名:nuclear receptor: NR 
英語名:nuclear receptor: NR 


 核内受容体は、ステロイドや甲状腺ホルモン、レチノイド、ビタミンDなどの受容体であり、主に、リガンドが結合すると細胞質から核内へ移行して転写調節因子としてはたらく[1]。リガンドの不明な核内受容体、リガンド結合とは別のしくみで活性が調節される核内受容体もある[2]。ヒトで48の遺伝子にコードされており、代謝、恒常性、分化、成長、発生、老化、生殖などの機能を担う。
 核内受容体は、ステロイドや甲状腺ホルモン、レチノイド、ビタミンDなどの受容体であり、主に、リガンドが結合すると細胞質から核内へ移行して転写調節因子としてはたらく<ref name=ref1>'''Alberts B, Johnson A, Lewis J, Raff M.'''<br>Molecular Biology of the Cell, 5th Edition, <br>pp889-891, ''Garland Science'', New York, 2008.</ref>。リガンドの不明な核内受容体、リガンド結合とは別のしくみで活性が調節される核内受容体もある<ref name=ref2><pubmed>16892386</pubmed></ref>。ヒトで48の遺伝子にコードされており、代謝、恒常性、分化、成長、発生、老化、生殖などの機能を担う。


== リガンド ==
== リガンド ==


(表1)[3]
(表1)<ref name=ref3><pubmed>18023286</pubmed></ref>


 リガンドからNRを分類すると、(1)ホルモンやビタミンをリガンドとする内分泌受容体、(2)配列相同性から発見され、後に生体内でのリガンドが同定されたもの、(3)リガンドの生体での機能が明らかでないもの、(4)リガンドの同定されていないものがある。
 リガンドからNRを分類すると、(1)ホルモンやビタミンをリガンドとする内分泌受容体、(2)配列相同性から発見され、後に生体内でのリガンドが同定されたもの、(3)リガンドの生体での機能が明らかでないもの、(4)リガンドの同定されていないものがある。
44行目: 44行目:
== 作用機序 ==
== 作用機序 ==


[[image:核内受容体3.png|thumb|300px|'''図3. 核内受容体活性化の2つのメカニズム'''<ref name=ref3><pubmed>18023286</pubmed></ref><br>上図:リガンド結合による活性化。リガンドのないとき(左図)、核内受容体はHDAC(ヒストンデアセチラーゼ)やSMRT/NCORなどとリプレッサー複合体を形成しており、転写抑制状態にある。リガンドが結合すると(右図)、コリプレッサーが解離し、HAT(ヒストンアセチルトランスフェラーゼ)やクロマチン再編成複合体から成るコアクチベーターを取り込んで、転写活性化状態になる。<br>
[[image:核内受容体3.png|thumb|300px|'''図3. 核内受容体活性化の2つのメカニズム'''<ref name=ref3><pubmed>18023286</pubmed></ref> <br>'''上図''':リガンド結合による活性化。リガンドのないとき(左図)、核内受容体はHDAC(ヒストンデアセチラーゼ)やSMRT/NCORなどとリプレッサー複合体を形成しており、転写抑制状態にある。リガンドが結合すると(右図)、コリプレッサーが解離し、HAT(ヒストンアセチルトランスフェラーゼ)やクロマチン再編成複合体から成るコアクチベーターを取り込んで、転写活性化状態になる。<br>
下図:リガンド結合によらない活性化。ERRなどリガンドなしに活性化される核内受容体もある。コアクチベーター(PGC-1など)が結合することで、さらに大きなコアクチベーター複合体を呼び込んで転写活性化状態になる。]]
'''下図''':リガンド結合によらない活性化。ERRなどリガンドなしに活性化される核内受容体もある。コアクチベーター(PGC-1など)が結合することで、さらに大きなコアクチベーター複合体を呼び込んで転写活性化状態になる。]]


 核内受容体のリガンドは、輸送蛋白質に結合して血中や体液中を運搬され、標的細胞の中へは単独で入り、細胞質に存在する核内受容体に結合する。例えば、グルココルチコイド受容体 (GR) は、細胞質でシャペロン蛋白質であるhsp90やp23と結合しており、リガンドが結合するとシャペロンから離れて核内に移行し、標的遺伝子の「グルココルチコイド応答エレメント(glucocorticoid response element: GRE)」と呼ばれるDNA配列に結合する[1](後述)。リガンドおよびDNAと結合したNRは、コアクチベーター蛋白質などと結合して、クロマチンの構造を変えて転写を調節する大きな複合体としてはたらく。また、細胞核内でリガンドと結合していないNRはコリプレッサー蛋白質と結合しており、標的遺伝子の転写を抑制している(図3)。NRは、細胞質蛋白質であるSMAD3やJNKとも相互作用する。AF-1領域にはリン酸化部位があり、リン酸化による活性調節を受ける。
 核内受容体のリガンドは、輸送蛋白質に結合して血中や体液中を運搬され、標的細胞の中へは単独で入り、細胞質に存在する核内受容体に結合する。例えば、グルココルチコイド受容体 (GR) は、細胞質でシャペロン蛋白質であるhsp90やp23と結合しており、リガンドが結合するとシャペロンから離れて核内に移行し、標的遺伝子の「グルココルチコイド応答エレメント(glucocorticoid response element: GRE)」と呼ばれるDNA配列に結合する<ref name=ref1 />(後述)。リガンドおよびDNAと結合したNRは、コアクチベーター蛋白質などと結合して、クロマチンの構造を変えて転写を調節する大きな複合体としてはたらく。また、細胞核内でリガンドと結合していないNRはコリプレッサー蛋白質と結合しており、標的遺伝子の転写を抑制している(図3)。NRは、細胞質蛋白質であるSMAD3やJNKとも相互作用する。AF-1領域にはリン酸化部位があり、リン酸化による活性調節を受ける。


== 核内受容体スーパーファミリー ==
== 核内受容体スーパーファミリー ==


 ヒトで48の遺伝子(表1)、マウスで49の遺伝子にコードされる。分子系統樹から7つのサブファミリー(NR0~6)に分類され、個々の慣用名に対応する正式名がある[4]。サブファミリー0 (NR0)は、DNA結合領域(DBD, C領域)またはリガンド結合領域(LBD, E領域)の一方しか持たないもので、例えばSHPはLBDしか持たずNR0B2と呼ばれる。各サブファミリーはさらにA, B,,,のグループに分けられ、1つのグループはパラログによって構成される。例えば、甲状腺ホルモン受容体 (TR) はサブファミリー1グループA (NR1A)で、TRαはNR1A1, TRβはNR1A2となる。また、例えばNR5A1a (=SF1)とNR5A1b(ELP)とは、同じ遺伝子からスプライシングの違いによってできた異なったアイソフォームである。
 ヒトで48の遺伝子(表1)、マウスで49の遺伝子にコードされる。分子系統樹から7つのサブファミリー(NR0~6)に分類され、個々の慣用名に対応する正式名がある<ref name=ref4><pubmed>10219237</pubmed></ref>。サブファミリー0 (NR0)は、DNA結合領域(DBD, C領域)またはリガンド結合領域(LBD, E領域)の一方しか持たないもので、例えばSHPはLBDしか持たずNR0B2と呼ばれる。各サブファミリーはさらにA, B,,,のグループに分けられ、1つのグループはパラログによって構成される。例えば、甲状腺ホルモン受容体 (TR) はサブファミリー1グループA (NR1A)で、TRαはNR1A1, TRβはNR1A2となる。また、例えばNR5A1a (=SF1)とNR5A1b(ELP)とは、同じ遺伝子からスプライシングの違いによってできた異なったアイソフォームである。
 
他の分類:組織特異的発現パターンや生理的機能から6群(クラスター)に分けられる(表2)<ref name=ref5><pubmed>16923397</pubmed></ref> <ref name=ref6><pubmed>22411605</pubmed></ref>。


他の分類:組織特異的発現パターンや生理的機能から6群(クラスター)に分けられる(表2)[5,6]。
*クラスターI: ステロイド合成
*クラスターI: ステロイド合成
*クラスターII: 生殖と発生
*クラスターII: 生殖と発生
68行目: 69行目:
== 研究の歴史、背景 ==
== 研究の歴史、背景 ==


[2]
<ref name=ref2><pubmed>16892386</pubmed></ref>
 
*1985年 ヒトGRのクローニング
*1985年 ヒトGRのクローニング
*1986年 ヒトERαのクローニング
*1986年 ヒトERαのクローニング
80行目: 80行目:
== 病気、創薬との関連 ==
== 病気、創薬との関連 ==


[2,3]
 処方薬上位200のうち34がNRを標的としたものであるというデータがある(2003年)<ref name=ref2><pubmed>16892386</pubmed></ref> 。Tamoxifenが最初に合成されたNRリガンドで、更年期障害の改善薬として使用されたが、子宮体ガンのリスクを高めることがわかり、現在ではER陽性の乳ガン治療薬として用いられている。その後、NRサブタイプ特異的アゴニスト薬剤の開発が進み、ER beta 特異的なアゴニストは骨粗鬆症に対する効果のみをもち、子宮内膜への増殖作用はないなど、副作用が極力抑えられるようになった。


 処方薬上位200のうち34がNRを標的としたものであるというデータがある(2003年)[2]。Tamoxifenが最初に合成されたNRリガンドで、更年期障害の改善薬として使用されたが、子宮体ガンのリスクを高めることがわかり、現在ではER陽性の乳ガン治療薬として用いられている。その後、NRサブタイプ特異的アゴニスト薬剤の開発が進み、ER beta 特異的なアゴニストは骨粗鬆症に対する効果のみをもち、子宮内膜への増殖作用はないなど、副作用が極力抑えられるようになった。
 HNF4a遺伝子変異により、糖尿病の一つ である成人発症型若年性糖尿病(Maturity Onset Diabetes of the Young [MODY1])がおこる<ref name=ref3><pubmed>18023286</pubmed></ref>。また、HNF4a遺伝子のプロモータ配列の多型性により成人発症2型糖尿病がおこる。SHP遺伝子の変異で肥満症となる。
 
 HNF4a遺伝子変異により、糖尿病の一つ である成人発症型若年性糖尿病(Maturity Onset Diabetes of the Young [MODY1])がおこる[3]。また、HNF4a遺伝子のプロモータ配列の多型性により成人発症2型糖尿病がおこる。SHP遺伝子の変異で肥満症となる。


== 脳科学との関連 ==
== 脳科学との関連 ==


 表1のように中枢神経系に存在して機能を担うNRがある。最近、NRは概日リズムを調節することがわかった[6]。概日リズムの形成には、1)転写アクチベーターであるBMAL1とCLOCKのヘテロダイマーが、Period (PER)とCryptochrome (CRY)遺伝子の転写を活性化すること、2)PERとCRYのヘテロダイマーは、逆にBMAL1/CLOCKのリプレッサーとして働くことが重要である。BMAL1/CLOCKはオーファンNRであるREV-ERBsの発現を促し、逆にREV-ERBsはBMAL1の発現を抑制する。
 表1のように中枢神経系に存在して機能を担うNRがある。最近、NRは概日リズムを調節することがわかった<ref name=ref6><pubmed>22411605</pubmed></ref>。概日リズムの形成には、1)転写アクチベーターであるBMAL1とCLOCKのヘテロダイマーが、Period (PER)とCryptochrome (CRY)遺伝子の転写を活性化すること、2)PERとCRYのヘテロダイマーは、逆にBMAL1/CLOCKのリプレッサーとして働くことが重要である。BMAL1/CLOCKはオーファンNRであるREV-ERBsの発現を促し、逆にREV-ERBsはBMAL1の発現を抑制する。


 糖質グルココルチコイド(Gc)の血中濃度は、視床下部視交叉上核や副腎のはたらきにより日内変動する。Gcと結合したGRは、GREを介してPER1, PER2遺伝子発現を調節するので、Gcの日内変動もまた概日リズムの強化に関わっている。
 糖質グルココルチコイド(Gc)の血中濃度は、視床下部視交叉上核や副腎のはたらきにより日内変動する。Gcと結合したGRは、GREを介してPER1, PER2遺伝子発現を調節するので、Gcの日内変動もまた概日リズムの強化に関わっている。
98行目: 96行目:
== リンク(データベース) ==
== リンク(データベース) ==


 Nuclear Receptor Signaling Atlas (NURSA): 2002年から米国NIHのサポートで設立されたコンソーシアムで、核内受容体と関連する転写コレギュエーターについてのゲノミクス・プロテオミクス公開データベースとなっている。
*[http://www.nursa.org/index.cfm Nuclear Receptor Signaling Atlas (NURSA): 2002年から米国NIHのサポートで設立されたコンソーシアムで、核内受容体と関連する転写コレギュエーターについてのゲノミクス・プロテオミクス公開データベースとなっている。]
http://www.nursa.org/index.cfm
*[http://en.wikipedia.org/wiki/Nuclear_receptor Nuclear receptor, Wikipedia]


== 参考文献 ==
== 参考文献 ==


<references />
<references />
1. Alberts B, Johnson A, Lewis J, Raff M. Molecular Biology of the Cell, 5th Edition, pp889-891, Garland Science, New York, 2008.
2. Moore JT, Collins JL, Pearce KH. The nuclear receptor superfamily and drug discovery. ChemMedChem. 2006 May;1(5):504-23. PMID: 16892386
3. Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. FEBS Lett. 2008 Jan 9;582(1):2-9. PMID: 18023286
4. Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell. 1999 Apr 16;97(2):161-3. PMID: 10219237
5. Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006 Aug 25;126(4):789-99. PMID: 16923397
6. Fan W, Downes M, Atkins A, Yu R, Evans RM. Nuclear Receptors and AMPK: Resetting Metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:17-22. Epub 2012 Mar 12. PMID: 22411605
7. Nuclear receptor, Wikipedia, http://en.wikipedia.org/wiki/Nuclear_receptor




(執筆者:大内淑代 担当編集委員:大隅典子)
(執筆者:大内淑代 担当編集委員:大隅典子)

案内メニュー