「免疫グロブリンスーパーファミリー」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
== 構造  ==
== 構造  ==


Igドメインは2つのβシートがサンドイッチのように合わさった球状構造を[[Image:Yutakafurutani fig 1.jpg|frame|right|340px|図1 免疫グロブリン様ドメインの立体構造]]呈する。それぞれのβシートは3つから5つの逆並行βストランドから構成されている(図1)。一般的にIgドメインには2つのシステイン残基が保存されて存在しており、それらシステインのSH基を介したジスルフィド結合によって、Igドメインの球状構造が安定化されてい<ref><pubmed>8528906</pubmed></ref><ref><pubmed>1710044</pubmed></ref>。  神経系に発現するIgSF分子群は、構造的特徴から以下の4つのグループに大別することができる(図2)。  
Igドメインは2つのβシートがサンドイッチのように合わさった球状構造を[[Image:Yutakafurutani fig 1.jpg|frame|right|300px|図1 免疫グロブリン様ドメインの立体構造]]呈する。それぞれのβシートは3つから5つの逆並行βストランドから構成されている(図1)。一般的にIgドメインには2つのシステイン残基が保存されて存在しており、それらシステインのSH基を介したジスルフィド結合によって、Igドメインの球状構造が安定化されてい<ref><pubmed>8528906</pubmed></ref><ref><pubmed>1710044</pubmed></ref>。  神経系に発現するIgSF分子群は、構造的特徴から以下の4つのグループに大別することができる(図2)。  


*グループⅠ:細胞外領域が1つあるいは複数のIgドメインだけから構成される分子群。。  
*グループⅠ:細胞外領域が1つあるいは複数のIgドメインだけから構成される分子群。。  
19行目: 19行目:
これらIgSF分子群の大部分はアミノ末端のシグナルペプチドと1つの膜貫通領域を有するI型膜蛋白質である。一方、一部のIgSF分子群はGPIアンカー構造を介して細胞膜のリン脂質に結合している(図2:→)。NCAMやOCAMでは、それぞれ1つの遺伝子からの選択的スプライシングによって膜貫通型とGPIアンカー型の2つのアイソフォームが神経細胞のタイプ特異的あるいは発達時期特異的に発現する。GPIアンカー型蛋白質は細胞膜のラフト構造に局在し、膜貫通型蛋白質と比較して細胞膜表面での移動の自由度が高い。またGPIアンカー型IgSF分子群は、ホスホリパーゼDを介したGPIアンカー部分の切断によって細胞外領域が膜から遊離され、分泌型リガンドとしての受容体への結合あるいはドミナントネガティブ分子としての接着阻害などの特徴的な機能を発現することがある。  
これらIgSF分子群の大部分はアミノ末端のシグナルペプチドと1つの膜貫通領域を有するI型膜蛋白質である。一方、一部のIgSF分子群はGPIアンカー構造を介して細胞膜のリン脂質に結合している(図2:→)。NCAMやOCAMでは、それぞれ1つの遺伝子からの選択的スプライシングによって膜貫通型とGPIアンカー型の2つのアイソフォームが神経細胞のタイプ特異的あるいは発達時期特異的に発現する。GPIアンカー型蛋白質は細胞膜のラフト構造に局在し、膜貫通型蛋白質と比較して細胞膜表面での移動の自由度が高い。またGPIアンカー型IgSF分子群は、ホスホリパーゼDを介したGPIアンカー部分の切断によって細胞外領域が膜から遊離され、分泌型リガンドとしての受容体への結合あるいはドミナントネガティブ分子としての接着阻害などの特徴的な機能を発現することがある。  


[[Image:Yutakafurutani fig 2.jpg|frame|center|600px]]<br>  
[[Image:Yutakafurutani fig 2.jpg|frame|center|600px|図2 免疫グロブリンスーパーファミリー細胞接着分子の構造。Cys: Cysteine-rich domain, EGF: epidermal growth factor-like repeat, Kr: Kringle domain, LRR: leucine-rich repeat, MAM: meprin/A5/protein tyrosine phosphatase domain, Sema: semaphorin domain, TK: tyrosine kinase, TP: tyrosine phosphatase, TS: thrombospondin domain.]]<br>  


== 機能  ==
== 機能  ==
29行目: 29行目:
 インテグリンやカドヘリンなど他のファミリーに属する細胞接着分子群がMg2+やCa2+などの2価カチオン依存的に結合するのに対して、ほとんどのIgSF分子群の結合はカチオンを必要としない。細胞接着分子の結合様式には、同一細胞膜上に存在する分子間の結合(cis結合)と、対面する他の細胞に発現する分子との結合 (trans結合)があり、多くのIgSF分子群はこれら2種類両方の結合を担う。また、細胞外マトリックス蛋白質をリガンドとするIgSF分子群も数多く報告されている。  
 インテグリンやカドヘリンなど他のファミリーに属する細胞接着分子群がMg2+やCa2+などの2価カチオン依存的に結合するのに対して、ほとんどのIgSF分子群の結合はカチオンを必要としない。細胞接着分子の結合様式には、同一細胞膜上に存在する分子間の結合(cis結合)と、対面する他の細胞に発現する分子との結合 (trans結合)があり、多くのIgSF分子群はこれら2種類両方の結合を担う。また、細胞外マトリックス蛋白質をリガンドとするIgSF分子群も数多く報告されている。  


 IgSF分子群が司る細胞接着の代表例として髄鞘[[Image:Yutakafurutani fig 3.jpg|frame|right|449px]](ミエリン:myelin)形成が挙げられる(図3)。末梢神経系においてはシュワン細胞、中枢神経系においてはオリゴデンドロサイトの細胞膜突起が幾重にもループのように軸索を取り巻くことで髄鞘が形成され、その部分が絶縁体の構造をとることで神経軸索における電気的信号の跳躍伝導に寄与している。隣り合う髄鞘の間は絞輪部(ノード:node)と呼ばれ、Na+チャネルとともにIgSFに属するNeurofascin-186やNrCAMが集積している。軸索と髄鞘の接着部分はパラノード(paranode)、傍パラノード(juxtaparanode)、インターノード(internode)に分けられる。パラノードの髄鞘側にはNeurofascin-155が局在し、軸索側に発現するContactinとヘテロフィリックな結合によって接着構造を形成する。傍パラノードでは、軸索と髄鞘の両側にTAG-1が局在して、ホモフィリックな結合を行っている。インターノードにおいては、P0のホモフィリックな相互作用が髄鞘の圧密化(compaction)を担い、さらにNecl同士の結合によって髄鞘と軸索との接着構造が形成される<ref><pubmed>18803321</pubmed></ref>。  
 IgSF分子群が司る細胞接着の代表例として髄鞘[[Image:Yutakafurutani fig 3.jpg|frame|right|449px|図3 ランビエ絞輪における免疫グロブリンスーパーファミリー細胞接着分子の局在]](ミエリン:myelin)形成が挙げられる(図3)。末梢神経系においてはシュワン細胞、中枢神経系においてはオリゴデンドロサイトの細胞膜突起が幾重にもループのように軸索を取り巻くことで髄鞘が形成され、その部分が絶縁体の構造をとることで神経軸索における電気的信号の跳躍伝導に寄与している。隣り合う髄鞘の間は絞輪部(ノード:node)と呼ばれ、Na+チャネルとともにIgSFに属するNeurofascin-186やNrCAMが集積している。軸索と髄鞘の接着部分はパラノード(paranode)、傍パラノード(juxtaparanode)、インターノード(internode)に分けられる。パラノードの髄鞘側にはNeurofascin-155が局在し、軸索側に発現するContactinとヘテロフィリックな結合によって接着構造を形成する。傍パラノードでは、軸索と髄鞘の両側にTAG-1が局在して、ホモフィリックな結合を行っている。インターノードにおいては、P0のホモフィリックな相互作用が髄鞘の圧密化(compaction)を担い、さらにNecl同士の結合によって髄鞘と軸索との接着構造が形成される<ref><pubmed>18803321</pubmed></ref>。  


=== 軸索ガイダンス  ===
=== 軸索ガイダンス  ===


 神経細胞はその軸索を、周囲に存在する様々な軸索誘引因子や軸索反発因子を認識しながら伸長させ、最終的に正しい標的細胞と機能的なシナプスを形成する。この軸索ガイダンス機構には多くのIgSF分子群が関与している。  その代表例として脊髄における交連神経細胞の軸索投射が挙げられる(図4)。脊髄の背側部に存在する交連神経細胞の軸索は、NgCAM及びaxonin-1の作用によって束状化されながら、底板(floor plate)から分泌される誘引因子ネトリン(netrin)の濃[[Image:Yutakafurutani fig 4.jpg|frame|right|445px]]度勾配に従って腹側方向へと伸長する。この時、ネトリンの受容体であるDCCが交連軸索に発現して機能している。次に、交連軸索に発現するaxonin-1と底板に発現するNrCAMの相互作用によって、軸索の底板への侵入が起こる。いったん正中線を横切って反対側へと到達した軸索は、吻側方向へと脳へと向けて伸長し、二度と同側に戻ることはない。これは底板から分泌される軸索反発因子スリット(slit)と軸索に発現するその受容体Roboの相互作用によるものである<ref><pubmed>7758116</pubmed></ref><ref><pubmed>17029581</pubmed></ref><ref><pubmed>9568394</pubmed></ref>。これら脊髄交連軸索のガイダンス機構において機能する分子群のうち、NgCAM、axonin-1、DCC、NrCAM及びRoboがIgSFに属する。&nbsp;  
 神経細胞はその軸索を、周囲に存在する様々な軸索誘引因子や軸索反発因子を認識しながら伸長させ、最終的に正しい標的細胞と機能的なシナプスを形成する。この軸索ガイダンス機構には多くのIgSF分子群が関与している。  その代表例として脊髄における交連神経細胞の軸索投射が挙げられる(図4)。脊髄の背側部に存在する交連神経細胞の軸索は、NgCAM及びaxonin-1の作用によって束状化されながら、底板(floor plate)から分泌される誘引因子ネトリン(netrin)の濃[[Image:Yutakafurutani fig 4.jpg|frame|right|445px|図4 脊髄における交連神経細胞の軸索誘導]]度勾配に従って腹側方向へと伸長する。この時、ネトリンの受容体であるDCCが交連軸索に発現して機能している。次に、交連軸索に発現するaxonin-1と底板に発現するNrCAMの相互作用によって、軸索の底板への侵入が起こる。いったん正中線を横切って反対側へと到達した軸索は、吻側方向へと脳へと向けて伸長し、二度と同側に戻ることはない。これは底板から分泌される軸索反発因子スリット(slit)と軸索に発現するその受容体Roboの相互作用によるものである<ref><pubmed>7758116</pubmed></ref><ref><pubmed>17029581</pubmed></ref><ref><pubmed>9568394</pubmed></ref>。これら脊髄交連軸索のガイダンス機構において機能する分子群のうち、NgCAM、axonin-1、DCC、NrCAM及びRoboがIgSFに属する。&nbsp;  


 軸索ガイダンスにおいてIgSF分子群が機能する別の例として、嗅上皮から嗅球へと至る一次嗅覚神経回路の構築メカニズムが挙げられる。特定の嗅覚受容体を発現する嗅細胞群は、それらの軸索を嗅球の同じ糸球体へと集束させる。これは脳における匂い情報コーディングおよびプロセシングの基盤となっており、Kirrel 2、Kirrel 3、BIG-2(Contactin 4)などのIgSF分子群が標的糸球体への軸索集束過程において重要な役割を果たしている<ref><pubmed>18367085</pubmed></ref><ref><pubmed>17129788</pubmed></ref>。  
 軸索ガイダンスにおいてIgSF分子群が機能する別の例として、嗅上皮から嗅球へと至る一次嗅覚神経回路の構築メカニズムが挙げられる。特定の嗅覚受容体を発現する嗅細胞群は、それらの軸索を嗅球の同じ糸球体へと集束させる。これは脳における匂い情報コーディングおよびプロセシングの基盤となっており、Kirrel 2、Kirrel 3、BIG-2(Contactin 4)などのIgSF分子群が標的糸球体への軸索集束過程において重要な役割を果たしている<ref><pubmed>18367085</pubmed></ref><ref><pubmed>17129788</pubmed></ref>。  
39行目: 39行目:
=== 樹状突起発達とシナプス形成  ===
=== 樹状突起発達とシナプス形成  ===


 軸索ガイダンスにおける機能とともに、多くのIsSF分子群は樹状突起の発達お[[Image:Yutakafurutani fig 5.jpg|frame|right|300px]]よびシナプス形成過程においても重要な役割を果たしている。  発達期において多くの神経細胞の樹状突起には、まるで薔薇の棘のように細く、長い突起構造が観察される。これは樹状突起フィロポディア(dendritic filopodia)と呼ばれ、その後スパインへと形態的かつ機能的に成熟して、シナプスの形成へと至る。テレンセファリン(Telencephalin; ICAM-5)は哺乳類終脳の神経細胞特異的な発現かつ樹状突起選択的な局在を示すIgSF分子である。テレンセファリンは、樹状突起フィロポディアに豊富に存在しており、樹状突起フィロポディアの形成及び維持を促進することで、スパインへの急速な成熟にブレーキをかけて臨界期を保つというユニークな機能を現す(図5)<ref><pubmed>21804538</pubmed></ref><ref><pubmed>17699668</pubmed></ref><ref><pubmed>16467526</pubmed></ref>。    
 軸索ガイダンスにおける機能とともに、多くのIsSF分子群は樹状突起の発達お[[Image:Yutakafurutani fig 5.jpg|frame|right|300px|図5 シナプス形成における免疫グロブリンスーパーファミリー細胞接着分子]]よびシナプス形成過程においても重要な役割を果たしている。  発達期において多くの神経細胞の樹状突起には、まるで薔薇の棘のように細く、長い突起構造が観察される。これは樹状突起フィロポディア(dendritic filopodia)と呼ばれ、その後スパインへと形態的かつ機能的に成熟して、シナプスの形成へと至る。テレンセファリン(Telencephalin; ICAM-5)は哺乳類終脳の神経細胞特異的な発現かつ樹状突起選択的な局在を示すIgSF分子である。テレンセファリンは、樹状突起フィロポディアに豊富に存在しており、樹状突起フィロポディアの形成及び維持を促進することで、スパインへの急速な成熟にブレーキをかけて臨界期を保つというユニークな機能を現す(図5)<ref><pubmed>21804538</pubmed></ref><ref><pubmed>17699668</pubmed></ref><ref><pubmed>16467526</pubmed></ref>。    


 特異的シナプスの形成過程においても多種多様なIgSF分子群が重要な役割を果たしている。Necl-2 (SynCAM 1)はシナプス前部と後部の両方に局在しており、ホモフィリックなcis結合及びtrans結合によって多量体を形成して、興奮性シナプスの形成を促進している<ref><pubmed>21145003</pubmed></ref>。Dscam, DscamL, Sidekick-1,-2はニワトリの網膜においてそれぞれ異なる介在神経細胞と網膜神経節細胞に発現しており、ホモフィリックな結合によってこれらの神経細胞間での特異的シナプス形成を制御している<ref><pubmed>18216854</pubmed></ref>。  
 特異的シナプスの形成過程においても多種多様なIgSF分子群が重要な役割を果たしている。Necl-2 (SynCAM 1)はシナプス前部と後部の両方に局在しており、ホモフィリックなcis結合及びtrans結合によって多量体を形成して、興奮性シナプスの形成を促進している<ref><pubmed>21145003</pubmed></ref>。Dscam, DscamL, Sidekick-1,-2はニワトリの網膜においてそれぞれ異なる介在神経細胞と網膜神経節細胞に発現しており、ホモフィリックな結合によってこれらの神経細胞間での特異的シナプス形成を制御している<ref><pubmed>18216854</pubmed></ref>。  
105

回編集

案内メニュー