24
回編集
細編集の要約なし |
細編集の要約なし |
||
9行目: | 9行目: | ||
分子Aと分子Bとの結合/解離について上記(1)の平衡反応が成立する場合、平衡状態における遊離型の分子A、遊離型の分子Bおよび結合型ABのモル濃度をそれぞれ[A]、[B]、[AB]とすると、結合定数K<sub>B</sub>(単位:M<sup>−1</sup>)は以下の式で表される。 | 分子Aと分子Bとの結合/解離について上記(1)の平衡反応が成立する場合、平衡状態における遊離型の分子A、遊離型の分子Bおよび結合型ABのモル濃度をそれぞれ[A]、[B]、[AB]とすると、結合定数K<sub>B</sub>(単位:M<sup>−1</sup>)は以下の式で表される。 | ||
<math>K_B = \frac{[AB]}{[A][B]} </math> ・・・・・(2) | |||
<math> | |||
== 解離定数 Dissociation constant == | == 解離定数 Dissociation constant == | ||
23行目: | 22行目: | ||
・Scatchardプロット <ref>'''田中千賀子、加藤隆一編'''<br>NEW薬理学 改訂第6版<br>''南江堂(東京)'':2011</ref> | ・Scatchardプロット <ref>'''田中千賀子、加藤隆一編'''<br>NEW薬理学 改訂第6版<br>''南江堂(東京)'':2011</ref> | ||
[[Image:1-scatch.jpg|thumb|図1 Scatchardプロットの一例]] | |||
受容体等のタンパク質へのリガンドの結合を解析する際に用いられてきた古典的手法である。受容体Bに対するリガンドAの結合を考えるとき、受容体総濃度B<sub>max</sub> = (非結合型のBの濃度) + (Aの結合したBの濃度) = [B] + [AB]であり、これを式(2)に代入すると | 受容体等のタンパク質へのリガンドの結合を解析する際に用いられてきた古典的手法である。受容体Bに対するリガンドAの結合を考えるとき、受容体総濃度B<sub>max</sub> = (非結合型のBの濃度) + (Aの結合したBの濃度) = [B] + [AB]であり、これを式(2)に代入すると | ||
42行目: | 41行目: | ||
B/F = K<sub>B</sub>(<sub>max</sub>−B) | B/F = K<sub>B</sub>(<sub>max</sub>−B) | ||
Bを横軸、B/Fを縦軸にとると直線関係が得られ、その傾き(=−K<sub>B</sub>)よりK<sub>B</sub>が求められる(図1)。性質の異なる複数の結合が存在する場合は、プロットは複数の直線の合成された形の曲線となる。 | Bを横軸、B/Fを縦軸にとると直線関係が得られ、その傾き(=−K<sub>B</sub>)よりK<sub>B</sub>が求められる(図1)。性質の異なる複数の結合が存在する場合は、プロットは複数の直線の合成された形の曲線となる。 | ||
Scatchardプロットの作成に必要なBおよびFの値は、<sup>3</sup>Hや<sup>125</sup>Iなどの放射性同位元素で標識したリガンドを用いた結合実験により測定できる。結合型と遊離型のリガンドを分離する手法としては、低分子量化合物のみを通す透析膜を用いた平衡透析法や、一定以上の分子量のものを通さない限外ろ過膜を用いた限外ろ過法などがある。 | Scatchardプロットの作成に必要なBおよびFの値は、<sup>3</sup>Hや<sup>125</sup>Iなどの放射性同位元素で標識したリガンドを用いた結合実験により測定できる。結合型と遊離型のリガンドを分離する手法としては、低分子量化合物のみを通す透析膜を用いた平衡透析法や、一定以上の分子量のものを通さない限外ろ過膜を用いた限外ろ過法などがある。 | ||
・等温滴定熱量測定isothemal titration calorimetry (ITC) <ref>'''織田昌幸'''<br>等温滴定熱測定.<br>''蛋白質科学会アーカイブ #30'':2008</ref> | ・等温滴定熱量測定isothemal titration calorimetry (ITC) <ref>'''織田昌幸'''<br>等温滴定熱測定.<br>''蛋白質科学会アーカイブ #30'':2008</ref> | ||
[[Image:2-ITC.jpg|thumb|図2 等温滴定熱量測定により得られる結合等温線の一例]] | |||
分子同士が結合する際に発生する(もしくは吸収される)微小な熱量を一定温度下で測定することにより、当該分子間相互作用の熱力学的プロファイル(結合定数を含む)を精度良く得る手法である。測定対象分子の化学修飾や固定化が不要であり、自然な状態に近い条件下での測定が可能である。実際の測定では、一方の分子の溶液に他方の分子の溶液を一定量ずつ滴下し、その際に生じた熱量変化を測定することで結合等温線(図2)が得られる。この曲線のフィッティングのパラメータより結合定数が求められる。 | |||
・表面プラズモン共鳴surface plasmon resonance (SPR)分析 <ref>'''津本浩平'''<br>タンパク質相互作用解析:等温滴定型熱量測定と表面プラズモン共鳴.<br>''生物工学会誌89(7);391-394'':2011</ref> | |||
[[Image:3-SPR.jpg|thumb|図3 表面プラズモン共鳴分析の一例]] | |||
・表面プラズモン共鳴surface plasmon resonance (SPR)分析 <ref>''津本浩平'''<br>タンパク質相互作用解析:等温滴定型熱量測定と表面プラズモン共鳴.<br>''生物工学会誌89(7);391-394'':2011</ref> | センサーチップ上で分子間相互作用をリアルタイムに測定し、分子間の結合/解離のパラメータを得る手法である。金(Au)の薄膜を蒸着させたセンサーチップ上に一方の分子B(リガンド)を固定化しておき、他方の分子A(アナライト)の溶液を一定時間灌流する。AとBの結合によって生じる微量の質量変化をSPRシグナルとして検出し(図3)、その測定値から結合反応(A + B → AB)の速度定数k<sub>on</sub>を得る。その後、アナライトを含まない緩衝液を灌流するとSPRシグナルが減衰し、これより解離反応(AB → A + B)の速度定数k<sub>off</sub>が得られる。このとき、結合定数K<sub>B</sub> = k<sub>on</sub>/k<sub>off</sub>である。 | ||
センサーチップ上で分子間相互作用をリアルタイムに測定し、分子間の結合/解離のパラメータを得る手法である。金(Au)の薄膜を蒸着させたセンサーチップ上に一方の分子B(リガンド)を固定化しておき、他方の分子A(アナライト)の溶液を一定時間灌流する。AとBの結合によって生じる微量の質量変化をSPRシグナルとして検出し(図3)、その測定値から結合反応(A + B → AB)の速度定数k<sub>on</sub> | |||
<references /> | <references /> |
回編集