33
回編集
Atsuhikoishida (トーク | 投稿記録) 細編集の要約なし |
Atsuhikoishida (トーク | 投稿記録) 細編集の要約なし |
||
3行目: | 3行目: | ||
同義語: S-vプロット、ミハエリス・メンテンプロット、ミヒャエリス・メンテンプロット | 同義語: S-vプロット、ミハエリス・メンテンプロット、ミヒャエリス・メンテンプロット | ||
酵素は生体内の各種の化学反応を円滑に行わせるための生体触媒であり、脳内においても情報伝達や物質代謝など、あらゆる生化学反応に関わっている。従って、脳神経系を理解する上で、個々の酵素の性質を明らかにすることは極めて重要である。1992年にジーンターゲティングの手法を用いて、空間記憶に関わる酵素としてCaMキナーゼⅡが初めて特定された<ref><pubmed>1378648</pubmed></ref><ref><pubmed>1321493</pubmed></ref> | 酵素は生体内の各種の化学反応を円滑に行わせるための生体触媒であり、脳内においても情報伝達や物質代謝など、あらゆる生化学反応に関わっている。従って、脳神経系を理解する上で、個々の酵素の性質を明らかにすることは極めて重要である。1992年にジーンターゲティングの手法を用いて、空間記憶に関わる酵素としてCaMキナーゼⅡが初めて特定された<ref><pubmed>1378648</pubmed></ref><ref><pubmed>1321493</pubmed></ref>が、この輝かしい研究成果も、それを遡ること十数年に渡る本酵素に関する地道で精力的な研究の積み重ね<ref><pubmed>12045104</pubmed></ref>があったればこそのものであろう。酵素の生化学的研究をおこなうにあたっては、酵素の性質を定量的に扱うことが大前提となるが、そのような場合の理論的基盤となるものが、以下に述べるミカエリス・メンテンの式である。本稿ではミカエリス・メンテンの式と、それを拡張したブリッグス・ホールデンの式の誘導について述べた後、これらの式による解析から得られる各種速度論的パラメータの求め方や意味について概説する。また、酵素阻害剤の理論的取り扱いについても代表的な例について簡単に解説し、最後に脳科学に関連の深い酵素に関する若干の研究例を紹介する。 | ||
== ミカエリス・メンテンの式 == | == ミカエリス・メンテンの式 == | ||
107行目: | 107行目: | ||
<br> | <br> | ||
=== 競合阻害(拮抗阻害:competitive inhibition) === | |||
=== | |||
(1)の反応スキームにおいて阻害剤<math>I</math>が酵素の基質結合部位に結合し、基質Sと阻害剤<math>I</math>が結合部位を奪い合うような場合を競合阻害(拮抗阻害:competitive inhibition)と呼ぶ。この場合、(1)の反応スキームに加えて | (1)の反応スキームにおいて阻害剤<math>I</math>が酵素の基質結合部位に結合し、基質Sと阻害剤<math>I</math>が結合部位を奪い合うような場合を競合阻害(拮抗阻害:competitive inhibition)と呼ぶ。この場合、(1)の反応スキームに加えて | ||
142行目: | 141行目: | ||
<br> <math>\frac{K_m(1+\frac{[I]}{K_i})}{V_{max}} = \frac{K_m}{V_{max}}\frac{1}{K_i}[I] + \frac{K_m}{V_{max}}</math> (26) | <br> <math>\frac{K_m(1+\frac{[I]}{K_i})}{V_{max}} = \frac{K_m}{V_{max}}\frac{1}{K_i}[I] + \frac{K_m}{V_{max}}</math> (26) | ||
と表せるので、各阻害剤濃度<span class="texhtml">[''I'']</span>に対して、図3のラインウィーバー・バークプロットの傾きをプロットした図4のような2次プロットを作成すると、(26) | と表せるので、各阻害剤濃度<span class="texhtml">[''I'']</span>に対して、図3のラインウィーバー・バークプロットの傾きをプロットした図4のような2次プロットを作成すると、(26)式に従った直線となり、その直線のx切片(<math>-K_i</math>に相当)の値から<span class="texhtml">''K''<sub>''i''</sub></span>値を求めることが出来る。<span class="texhtml">''K''<sub>''i''</sub></span>は阻害定数と呼ばれ、この場合、酵素—阻害剤複合体の解離定数に相当する。<span class="texhtml">''K''<sub>''i''</sub></span>は酵素と阻害剤の親和性の尺度であり、値が小さいほど酵素に対する親和性が強いことを示す。 [[Image:AtsuhikoIshida fig 4.jpg|thumb|300px|図4 Ki値を求めるための二次プロット。各阻害剤濃度に対して図3のプロットの傾きをプロットしたもの。]] | ||
<br> | |||
=== | ===非競合阻害(非拮抗阻害:noncompetitive inhibition) === | ||
(1)の反応スキームにおいて阻害剤<math>I</math>と基質Sが互いに異なる部位に独立に結合し、互いの結合に影響を及ぼさないような場合、これを非競合阻害(非拮抗阻害:noncompetitive inhibition)と呼ぶ。この場合、(1)(19)の反応スキームに加えて | (1)の反応スキームにおいて阻害剤<math>I</math>と基質Sが互いに異なる部位に独立に結合し、互いの結合に影響を及ぼさないような場合、これを非競合阻害(非拮抗阻害:noncompetitive inhibition)と呼ぶ。この場合、(1)(19)の反応スキームに加えて | ||
161行目: | 160行目: | ||
<br> <span class="texhtml">[''E''<sub>0</sub>] = [''E''] + [''ES''] + [''EI''] + [''ESI'']</span> (31) | <br> <span class="texhtml">[''E''<sub>0</sub>] = [''E''] + [''ES''] + [''EI''] + [''ESI'']</span> (31) | ||
となる。上記と同様に | となる。上記と同様に(29)(30)(31)より<span class="texhtml">[''E'']</span>, <span class="texhtml">[''EI'']</span>, <span class="texhtml">[''ESI'']を消去し、得られた<span class="texhtml">[</span>''ES'']を(3)に代入して、<span class="texhtml">''k''<sub>3</sub>[''E''<sub>0</sub>] = ''V''<sub>''max''</sub></span>, <span class="texhtml">''K''<sub>''d''</sub> = ''K''<sub>''m''</sub></span>とおくと、 </span>''' <br> <math>v = \frac{1}{1+\frac{[I]}{K_i}}\frac{V_{max}[S]}{K_m +[S]}</math> (32) | ||
この式を元のミカエリス・メンテンの式 (7)式と比較すると、非競合阻害剤<math>I</math>の存在下では<span class="texhtml">''K''<sub>''m''</sub></span>は変化しないが<span class="texhtml">''V''<sub>''max''</sub></span>が<span class="texhtml">1 / (1 + [''I''] / ''K''<sub>''i''</sub>)</span>だけ減少していることが分かる。また、(14)や(24)と同様に(32)式の逆数をとって整理すると | この式を元のミカエリス・メンテンの式 (7)式と比較すると、非競合阻害剤<math>I</math>の存在下では<span class="texhtml">''K''<sub>''m''</sub></span>は変化しないが<span class="texhtml">''V''<sub>''max''</sub></span>が<span class="texhtml">1 / (1 + [''I''] / ''K''<sub>''i''</sub>)</span>だけ減少していることが分かる。また、(14)や(24)と同様に(32)式の逆数をとって整理すると |
回編集