「遅いシナプス後電位」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
8行目: 8行目:


[[Image:Taroishikawa fig 2.jpg|thumb|right|400px|'''ウシガエル交感神経節における4種類のシナプス応答'''<BR> A. (左)速い興奮性シナプス後電位、(右)閾値を超えて活動電位を発火している。B. 遅い抑制性シナプス後電位。 C. 遅いシナプス後電位。D. 後期の遅いシナプス電位。Jan ''et al.'' (1979)<ref name=ref1><pubmed>35789</pubmed></ref>より転載。]]  
[[Image:Taroishikawa fig 2.jpg|thumb|right|400px|'''ウシガエル交感神経節における4種類のシナプス応答'''<BR> A. (左)速い興奮性シナプス後電位、(右)閾値を超えて活動電位を発火している。B. 遅い抑制性シナプス後電位。 C. 遅いシナプス後電位。D. 後期の遅いシナプス電位。Jan ''et al.'' (1979)<ref name=ref1><pubmed>35789</pubmed></ref>より転載。]]  
 遅いシナプス電位については、1950年代から1980年代にかけて、[[wikipedia:ja:ウシガエル|ウシガエル]]の交感神経節([[wikipedia:Sympathetic ganglion|Sympathetic ganglion]])を用いた研究で多くの事実が明らかにされた。このシナプスでは、ニコチン性[[wikipedia:jp:アセチルコリン受容体|アセチルコリン受容体]]を介した速い興奮性シナプス電位の他に、ムスカリン性アセチルコリン受容体を介した遅い抑制性電位と興奮性電位があり、さらに、LHRH-like peptide(哺乳動物の[[wikipedia:jp:性腺刺激ホルモン放出ホルモン|LHRH]]に類似したペプチド)による後期の遅いシナプス電位late slow synaptic potentialがあることが明らかにされた<ref name=ref1/>。これらの発見の経緯は久場による総説<ref>'''久場健司'''<BR>興奮膜とシナプス生理学の黎明の頃―纐纈教三先生の研究史を辿りながら<BR>''日本生理学雑誌'': 2007, 69(12): 362-377[http://physiology.jp/exec/nisseishi/backnumber/151 日本生理学雑誌 第69巻 12号]</ref>に詳しい。
 遅いシナプス電位については、1950年代から1980年代にかけて、[[wikipedia:ja:ウシガエル|ウシガエル]]の交感神経節([[wikipedia:Sympathetic ganglion|Sympathetic ganglion]])を用いた研究で多くの事実が明らかにされた。このシナプスでは、ニコチン性[[wikipedia:jp:アセチルコリン受容体|アセチルコリン受容体]]を介した速い興奮性シナプス電位の他に、ムスカリン性アセチルコリン受容体を介した遅い抑制性電位と興奮性電位があり、さらに、LHRH-like peptide(哺乳動物の[[wikipedia:jp:性腺刺激ホルモン放出ホルモン|LHRH]]に類似したペプチド)による後期の遅いシナプス電位(late slow synaptic potential)があることが明らかにされた<ref name=ref1/>。これらの発見の経緯は久場による総説<ref>'''久場健司'''<BR>興奮膜とシナプス生理学の黎明の頃―纐纈教三先生の研究史を辿りながら<BR>''日本生理学雑誌'': 2007, 69(12): 362-377[http://physiology.jp/exec/nisseishi/backnumber/151 日本生理学雑誌 第69巻 12号]</ref>に詳しい。
<br>  
<br>  


== 伝達物質と受容体の種類  ==
== 伝達物質と受容体の種類  ==


 速いシナプス伝達を担うイオンチャネル型受容体はそれ自体にイオンが透過する孔(pore)を持っているのに対し、遅いシナプス伝達を担う代謝型受容体はそれ自体には[[wikipedia:jp:イオンチャンネル|イオンチャンネル]]としての機能はなく、[[wikipedia:jp:シグナル伝達#細胞内シグナル伝達|細胞内シグナル伝達]]を介してイオンチャンネルに働きかけることによって[[wikipedia:jp:膜電位|膜電位]]に影響を与える。神経系において遅いシナプス伝達を担う代謝型受容体の殆どは[[wikipedia:ja:Gタンパク質共役受容体|Gタンパク質共役受容体]](G-protein coupled receptors <ref>'''Bertil Hille'''<BR>G protein-coupled receptor<BR>''Scholarpedia'': 2009, 4(12):8214 [http://www.scholarpedia.org/article/G_protein-coupled_receptor Scholarpedia]</ref>)である。 神経系に存在する主なGタンパク質共役受容体としては、代謝型[[wikipedia:jp:グルタミン酸受容体|グルタミン酸受容体]]([[wikipedia:Metabotropic glutamate receptor|metabotropic glutamate receptor]])、[[GABA受容体]](B型)([[wikipedia:GABAB receptor|GABA<sub>B</sub> receptor]])、[[wikipedia:jp:ドーパミン受容体|ドーパミン受容体]]([[wikipedia:Dopamine receptor|dopamine receptor]])、[[セロトニン#セロトニン受容体|セロトニン(5-HT)受容体]]([[wikipedia:5-HT receptor|serotonin receptor]])(3型を除く)、[[wikipedia:jp:アドレナリン受容体|アドレナリン受容体]]([[wikipedia:Adrenergic receptor|adrenergic receptor]])、[[wikipedia:jp:アデノシン受容体|アデノシン受容体]]([[wikipedia:Adenosine receptor|adenosine receptor]])、[[wikipedia:jp:アセチルコリン受容体#ムスカリン受容体|ムスカリン性アセチルコリン受容体]]([[wikipedia:Muscarinic acetylcholine receptor|muscarinic acetylcholine receptor]])、[[wikipedia:jp:アナンダミド#カンナビノイド受容体|カンナビノイド受容体]]([[wikipedia:Cannabinoid receptor|cannabinoid receptor]])、[[wikipedia:jp:ヒスタミン受容体|ヒスタミン受容体]]([[wikipedia:Histamine receptor|histamine receptor]])、[[wikipedia:jp:P2受容体ファミリー|P2Y受容体]]([[wikipedia:P2Y receptor|P2Y receptor]])があり、各々の[[wikipedia:jp:リガンド|リガンド]]により活性化される。<BR> また、Gタンパク質共役受容体以外にも、[[wikipedia:jp:TrkB receptor|TrkB]]等の受容体型チロシンキナーゼが[[wikipedia:jp:神経栄養因子|神経栄養因子]]([[wikipedia:jp:脳由来神経栄養因子|BDNF]]等)により活性化され、細胞内シグナル伝達を介して膜電位に影響を与える例が知られている<ref><pubmed>12671646</pubmed></ref>。
 速いシナプス伝達を担うイオンチャネル型受容体はそれ自体にイオンが透過する孔(pore)を持っているのに対し、遅いシナプス伝達を担う代謝型受容体はそれ自体には[[wikipedia:jp:イオンチャンネル|イオンチャンネル]]としての機能はなく、[[wikipedia:jp:シグナル伝達#細胞内シグナル伝達|細胞内シグナル伝達]]を介してイオンチャンネルに働きかけることによって[[wikipedia:jp:膜電位|膜電位]]に影響を与える。神経系において遅いシナプス伝達を担う代謝型受容体の殆どは[[wikipedia:ja:Gタンパク質共役受容体|Gタンパク質共役受容体]](G-protein coupled receptors <ref>'''Bertil Hille'''<BR>G protein-coupled receptor<BR>''Scholarpedia'': 2009, 4(12):8214 [http://www.scholarpedia.org/article/G_protein-coupled_receptor Scholarpedia]</ref>)である。 神経系に存在する主なGタンパク質共役受容体としては、代謝型[[wikipedia:jp:グルタミン酸受容体|グルタミン酸受容体]]([[wikipedia:Metabotropic glutamate receptor|metabotropic glutamate receptor]])、[[GABA受容体]](B型)([[wikipedia:GABAB receptor|GABA<sub>B</sub> receptor]])、[[wikipedia:jp:ドーパミン受容体|ドーパミン受容体]]([[wikipedia:Dopamine receptor|dopamine receptor]])、[[セロトニン#セロトニン受容体|セロトニン(5-HT)受容体]]([[wikipedia:5-HT receptor|serotonin receptor]])(3型を除く)、[[wikipedia:jp:アドレナリン受容体|アドレナリン受容体]]([[wikipedia:Adrenergic receptor|adrenergic receptor]])、[[wikipedia:jp:アデノシン受容体|アデノシン受容体]]([[wikipedia:Adenosine receptor|adenosine receptor]])、[[wikipedia:jp:アセチルコリン受容体#ムスカリン受容体|ムスカリン性アセチルコリン受容体]]([[wikipedia:Muscarinic acetylcholine receptor|muscarinic acetylcholine receptor]])、[[wikipedia:jp:アナンダミド#カンナビノイド受容体|カンナビノイド受容体]]([[wikipedia:Cannabinoid receptor|cannabinoid receptor]])、[[wikipedia:jp:ヒスタミン受容体|ヒスタミン受容体]]([[wikipedia:Histamine receptor|histamine receptor]])、[[wikipedia:jp:P2受容体ファミリー|P2Y受容体]]([[wikipedia:P2Y receptor|P2Y receptor]])があり、各々の[[wikipedia:jp:リガンド|リガンド]]により活性化される。<BR> また、Gタンパク質共役受容体以外にも、[[wikipedia:jp:TrkB|TrkB]]等の[[wikipedia:jp:プロテインキナーゼ#受容体型チロシンキナーゼ|受容体型チロシンキナーゼ]]が[[wikipedia:jp:神経栄養因子|神経栄養因子]]([[wikipedia:jp:脳由来神経栄養因子|BDNF]]等)により活性化され、細胞内シグナル伝達を介して膜電位に影響を与える例が知られている<ref><pubmed>12671646</pubmed></ref>。
<br>
<br>
== イオンチャンネルの種類  ==
== イオンチャンネルの種類  ==
28行目: 28行目:
== 生理的意義  ==
== 生理的意義  ==


 一般的に遅いシナプス電位の振幅は小さく、興奮性伝達の場合においても、それ自体で閾値に達して活動電位の発火を引き起こすことは殆どないと考えられる。むしろ、持続的な膜電位変化をもたらすことで、速いシナプス伝達による発火のしやすさを調節したり、自発発火に影響を与えたりするなど、修飾的な役割が主である。カルシウム透過性のあるTRPチャンネルが開口すれば、細胞内カルシウム濃度の上昇を引き起こし、細胞内[[wikipedia:jp:カルシウムシグナリング|カルシウムシグナリング]]に影響をあたえる。 なお、代謝型受容体の活性化により引き起こされるのは電位の変化(遅いシナプス電位)だけではなく、これと平行して、細胞内カルシウム濃度の変化を含む様々な細胞内シグナルカスケードが活性化されて、細胞内タンパク質のリン酸化や遺伝子発現が引き起こされ、シナプス電位の持続時間以上の長期的な影響を与え得ることに注意すべきである。
 一般的に遅いシナプス電位の振幅は小さく、興奮性伝達の場合においても、それ自体で閾値に達して活動電位の発火を引き起こすことは殆どない。むしろ、持続的な膜電位変化をもたらすことで、速いシナプス伝達による発火のしやすさを調節したり、自発発火([[wikipedia:Neural oscillation|spontaneous firing]])に影響を与えたりするなど、修飾的な役割が主であると考えられる。 ただし、代謝型受容体の活性化により引き起こされるのは膜電位の変化(遅いシナプス電位)だけではなく、これと平行して、[[wikipedia:jp:カルシウムシグナリング#細胞内貯蔵Ca2+の放出|細胞内貯蔵Ca<sup>2+</sup>の放出]]等の様々な細胞内シグナル伝達系が活性化されて、細胞内タンパク質のリン酸化や遺伝子発現が引き起こされ、膜電位変化の持続時間以上の長期的な影響を与え得ることに注意すべきである。また、カルシウム透過性のあるTRPチャンネルが開口すれば、直接的に細胞内カルシウム濃度の上昇を引き起こし、細胞内カルシウムシグナリングに影響をあたえることも重要である。
<br>  
<br>  
   
   
19

回編集

案内メニュー