「視覚運動性眼振」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
11行目: 11行目:
 OKRを起こす刺激となる外界の大きな動きは網膜の[[視細胞]]に感知され、その情報は視神経により対側の[[視蓋前域]]にある[[視索路核]] (nucleus of optic tract)に伝わる。視索路核は[[脳幹]]の[[橋被蓋網様核]](nucleus reticularis tegmenti pontis、NRTP)に投射し、NRTPは対側(従って刺激された眼球とは同側)の[[前庭神経核]]の前庭動眼反射を中継する神経細胞群に投射する。 明るいところで頭を回転したとき、前庭動眼反射により、頭の回転を補正する方向に眼が動くが、前庭動眼反射だけでは、頭の回転を完全に補償することができないので、retinal slipが生じる。するとそのretinal slipを打ち消すようにOKRが働き、結果として頭の動きを完全に補償だけ眼が動き視野はぶれずにすむ。このようにOKRと前庭動眼反射は機能的に強く関連している。OKRと前庭動眼反射は、脳幹や[[小脳]]の神経回路を共有する<ref name="ref3">'''Ito M'''<br>The cerebellum and neural control.<br>Raven, New York, 1984.</ref> <ref name="ref4">'''Ito M'''<br>The cerebellum: Brain for an implicit self.<br>FT Press, New York, 2011. </ref><ref name="ref5">'''Collewijn H'''<br>The oculomotor system of the rabbit and plasticity.<br>''Springer'', Berlin Heidelberg New York, 1981 </ref>。  
 OKRを起こす刺激となる外界の大きな動きは網膜の[[視細胞]]に感知され、その情報は視神経により対側の[[視蓋前域]]にある[[視索路核]] (nucleus of optic tract)に伝わる。視索路核は[[脳幹]]の[[橋被蓋網様核]](nucleus reticularis tegmenti pontis、NRTP)に投射し、NRTPは対側(従って刺激された眼球とは同側)の[[前庭神経核]]の前庭動眼反射を中継する神経細胞群に投射する。 明るいところで頭を回転したとき、前庭動眼反射により、頭の回転を補正する方向に眼が動くが、前庭動眼反射だけでは、頭の回転を完全に補償することができないので、retinal slipが生じる。するとそのretinal slipを打ち消すようにOKRが働き、結果として頭の動きを完全に補償だけ眼が動き視野はぶれずにすむ。このようにOKRと前庭動眼反射は機能的に強く関連している。OKRと前庭動眼反射は、脳幹や[[小脳]]の神経回路を共有する<ref name="ref3">'''Ito M'''<br>The cerebellum and neural control.<br>Raven, New York, 1984.</ref> <ref name="ref4">'''Ito M'''<br>The cerebellum: Brain for an implicit self.<br>FT Press, New York, 2011. </ref><ref name="ref5">'''Collewijn H'''<br>The oculomotor system of the rabbit and plasticity.<br>''Springer'', Berlin Heidelberg New York, 1981 </ref>。  


 NOTやNRTPの神経細胞は対側の眼球上で、スクリーンが鼻から耳の方向(naso-temporal)に動く時には反応するが、逆の方向(temporo-nasal)に動く時はあまり反応しない。従ってOKRにも方向選択性があり、単眼にスクリーンの回転刺激を提示した時に、鼻―耳方向に誘発されるOKRに比べて、耳―鼻方向に誘発されるOKRははるかに小さい。一方、垂直方向のOKRには、水平性のOKRで見られるような方向選択性はない<ref name="ref5" />。 OKR の動特性を調べるには、縞もしくがパターン模様のスクリーンを眼前におき、それを正弦波状に動かし、誘発される眼球運動をテレビカメラもしくは[[wikipedia:Search coil|サーチコイル]]で記録する方法を用いる(図1A)。誘発された眼球運動の位置もしくは速度のトレースを算出し、スクリーンの動きと比較することで、OKRの利得(ゲイン)と位相差を算出する(図1B)。図1Cにマウスと黒眼のウサギのOKRのゲインと位相差を示す。通常比較的遅いスクリーンの回転に対してはゲインほぼ一定であり、スクリーンの回転が速くなるとゲインは低下する。位相差は、ゲインが一定のところではほぼ0度であるが、ゲインが下がるにつれて遅れが増加する。これらは、閉ループのOKRの動特性である。開ループのOKRゲインも測定されている。一側の[[wikipedia:ja:外眼筋|外眼筋]]を支配する神経を[[局所麻酔]]し眼球を不動化しその眼にのみ視覚刺激を提示しながら、視覚刺激を遮断した対側の眼球で誘発されるOKRを記録するか、あるいは通常の方法でOKRを誘発しながら、眼の動きを高速で記録しretinal slipが実質0となるようにスクリーンの動きを調節する(stabilized retinal image)することで開ループゲインが求められる。OKRの開ループゲインは100程度である<ref name="ref5" />。  
 NOTやNRTPの神経細胞は対側の眼球上で、スクリーンが鼻から耳の方向に動く時には反応するが、耳から鼻の方向に動く時はあまり反応しない。従ってOKRにも方向選択性があり、単眼にスクリーンの回転刺激を提示した時に、鼻―耳方向に誘発されるOKRに比べて、耳―鼻方向に誘発されるOKRははるかに小さい。一方、垂直方向のOKRには、水平性のOKRで見られるような方向選択性はない<ref name="ref5" />。 OKR の動特性を調べるには、縞もしくがパターン模様のスクリーンを眼前におき、それを正弦波状に動かし、誘発される眼球運動をテレビカメラもしくは[[wikipedia:Search coil|サーチコイル]]で記録する方法を用いる(図1A)。誘発された眼球運動の位置もしくは速度のトレースを算出し、スクリーンの動きと比較することで、OKRの利得(ゲイン)と位相差を算出する(図1B)。図1Cにマウスと黒眼のウサギのOKRのゲインと位相差を示す。通常比較的遅いスクリーンの回転に対してはゲインほぼ一定であり、スクリーンの回転が速くなるとゲインは低下する。位相差は、ゲインが一定のところではほぼ0度であるが、ゲインが下がるにつれて遅れが増加する。これらは、閉ループのOKRの動特性である。開ループのOKRゲインも測定されている。一側の[[wikipedia:ja:外眼筋|外眼筋]]を支配する神経を[[局所麻酔]]し眼球を不動化しその眼にのみ視覚刺激を提示しながら、視覚刺激を遮断した対側の眼球で誘発されるOKRを記録するか、あるいは通常の方法でOKRを誘発しながら、眼の動きを高速で記録しretinal slipが実質0となるようにスクリーンの動きを調節する(stabilized retinal image)することで開ループゲインが求められる。OKRの開ループゲインは100程度である<ref name="ref5" />。  


[[Image:図1 OKN.jpg|thumb|250px|'''図1.マウスを対象とした視機性眼球反応(OKR)の誘発と赤外線カメラを用いた測定システム'''<br>(A) マウスを円筒状の縞模様(ドットパターン)スクリーンの中に置き、頭を固定する。スクリーンを正弦波状に回転させたときに誘発される眼球運動を赤外線テレビカメラで記録し、瞳孔の中心の位置を計測する。(B)OKRのゲインと位相差の算出法。計測された眼球運動とスクリーンの動きとを比較し、ゲインと位相差(時間、もしくは1周期360度として角度に換算)を算出する。(C)マウスの水平性OKRの位相差とゲイン。<ref name=ref2 />を改変。(D)黒眼ウサギの水平性OKRの位相差とゲイン。<ref name=ref1 />を改変。]]  
[[Image:図1 OKN.jpg|thumb|250px|'''図1.マウスを対象とした視機性眼球反応(OKR)の誘発と赤外線カメラを用いた測定システム'''<br>(A) マウスを円筒状の縞模様(ドットパターン)スクリーンの中に置き、頭を固定する。スクリーンを正弦波状に回転させたときに誘発される眼球運動を赤外線テレビカメラで記録し、瞳孔の中心の位置を計測する。(B)OKRのゲインと位相差の算出法。計測された眼球運動とスクリーンの動きとを比較し、ゲインと位相差(時間、もしくは1周期360度として角度に換算)を算出する。(C)マウスの水平性OKRの位相差とゲイン。<ref name=ref2 />を改変。(D)黒眼ウサギの水平性OKRの位相差とゲイン。<ref name=ref1 />を改変。]]  
68

回編集

案内メニュー