「リアノジン受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
英語名:Ryanodine receptor 英語略名:RyR  
英語名:Ryanodine receptor 英語略名:RyR  


 リアノジン受容体は細胞内[[カルシウム]]貯蔵部位である小胞体膜上に存在するカルシウムチャネルであり、その名は、植物[[wikipedia:ja:アルカロイド|アルカロイド]]である[[wikipedia:ja:リアノジン|リアノジン]]が結合することに由来する。小胞体からのカルシウム放出を担うことから、同じく小胞体膜上に存在するカルシウムチャネルである[[イノシトール1,4,5-三リン酸受容体]](inositol 1,4,5-trisphosphate receptor; IP<sub>3</sub>R)とともに、カルシウム放出チャネルとも呼ばれ、細胞内カルシウム濃度調節に関与する(図1)。RyRには三種類のサブタイプが存在し、それぞれ異なった分布を示すが、脳においては三種類全ての発現が見られる。また三種類のサブタイプ全てに対して遺伝子欠損マウスが作成されているが、1型RyR欠損マウスは出生致死、2型RyR欠損マウスは胎生致死を示す。3型RyR欠損マウスのみ生後も生存・成熟するため解析が可能であり、脳機能への関与についての報告が存在する。他にも、主に薬理学的なアプローチにより、シナプス可塑性・神経細胞興奮性などへのRyRの関与が示唆されている。
 リアノジン受容体は細胞内[[カルシウム]]貯蔵部位である小胞体膜上に存在するカルシウムチャネルであり、その名は、植物[[wikipedia:ja:アルカロイド|アルカロイド]]である[[wikipedia:ja:リアノジン|リアノジン]]が結合することに由来する。小胞体からのカルシウム放出を担うことから、同じく小胞体膜上に存在するカルシウムチャネルである[[イノシトール1,4,5-三リン酸受容体]](inositol 1,4,5-trisphosphate receptor; IP<sub>3</sub>R)とともに、カルシウム放出チャネルとも呼ばれ、細胞内カルシウム濃度調節に関与する(図1)。RyRには三種類のサブタイプが存在し、それぞれ異なった分布を示すが、脳においては三種類全ての発現が見られる。また三種類のサブタイプ全てに対して[[遺伝子欠損マウス]]が作成されているが、1型RyR欠損マウスは出生致死、2型RyR欠損マウスは胎生致死を示す。3型RyR欠損マウスのみ生後も生存・成熟するため解析が可能であり、脳機能への関与についての報告が存在する。他にも、主に薬理学的なアプローチにより、[[シナプス可塑性]]・[[神経細胞興奮性]]などへのRyRの関与が示唆されている。


== 歴史 ==
 カルシウムイオン(Ca<sup>2+</sup>)は普遍的かつ基本的な[[シグナル伝達]]を担う[[セカンドメッセンジャー]]であり、極めて多くの生命現象に関与する。細胞内におけるカルシウムシグナル形成は、[[細胞膜]]に存在するカルシウムチャネルを介して細胞外から細胞内へのカルシウムの流入によるものと、細胞内カルシウムストア(小胞体)からカルシウム放出チャネルを介して細胞質へ放出される2通りの経路による(図1)。[[カルシウム誘発性カルシウム放出|カルシウム誘発性カルシウム放出]](Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release; CICR)は、[[細胞質]]側のカルシウム濃度上昇が細胞内ストアから細胞質へのカルシウム放出を促進する現象であり、[[wikipedia:ja:骨格筋|骨格筋]]で最初に見出された<ref><pubmed>5456208</pubmed></ref>。その後、同様の現象が多くの[[wikipedia:ja:興奮性細胞|興奮性細胞]]において見られたことから、CICRは細胞内カルシウムシグナルを増幅するための普遍的な機構であると考えられるようになり、CICRの分子実体であるCICRチャネルの薬理学的性質が調べられた。その結果、植物アルカロイドであるリアノジンがCICRチャネルに特異的に結合し、低濃度ではチャネルを開口状態に固定する薬物であることが示された。
 引き続き、標識リアノジンを用いた結合活性を指標に、[[wikipedia:ja:骨格筋|骨格筋]]よりCICRチャネル、即ちリアノジン受容体(RyR)が精製された<ref><pubmed>2448641</pubmed></ref>。その後の遺伝子[[wikipedia:ja:クローニング|クローニング]]により、少なくとも[[wikipedia:ja:硬骨魚類|硬骨魚類]]以上の[[wikipedia:ja:脊椎動物|脊椎動物]]では、別々の遺伝子にコードされる3種類のRyRサブタイプが存在することが判明し、それぞれ、1型/骨格筋型(RyR1)、2型/心筋型(RyR2)、3型/脳型(RyR3)と呼ばれる<ref><pubmed>9137551</pubmed></ref><ref><pubmed>12777839</pubmed></ref>。各サブタイプは互いに65%程度のアミノ酸配列相同性を示すが、異なる組織分布・脳内分布を示す<ref><pubmed>1330694</pubmed></ref><ref name=ref6><pubmed> 7876312 </pubmed></ref>。一方、[[線虫]]<ref><pubmed>9135117</pubmed></ref>、[[ショウジョウバエ]]<ref><pubmed>8276118</pubmed></ref>においては、どのタイプにも属さないRyR相同物が同定されており、[[wikipedia:ja:無脊椎動物|無脊椎動物]]においては単一遺伝子にコードされていたものが、脊椎動物において組織分布や機能的役割が異なる3種のサブタイプに分子進化したと推測されている。
<gallery widths=350px heights=200px>
<gallery widths=350px heights=200px>
ファイル:RyR signal.jpg|'''図1.リアノジン受容体を介するシグナル系'''<br>脳の神経細胞におけるリアノジン受容体(RyRs)を介するシグナル伝達。海馬の錐体細胞ではNMDA型グルタミン酸受容体(NMDAR)、小脳のプルキンエ細胞では電位依存症カルシウムチャネル(VDCC)を介する細胞外からのカルシウム流入による細胞内カルシウム濃度上昇により、Ca<sup>2+</sup>-induced Ca<sup>2+</sup> releaseが起こる。一方、小脳プルキンエ細胞では一酸化窒素(NO)による1型RyR(RyR1)のS-ニトロシル化によりNO-induced Ca<sup>2+</sup>releaseも起こる。ER:endoplasmic reticulum; IP3R:inositol 1,4,5 tris phosphate receptor; SERCA: sarco/endoplasmic reticulum Ca<sup>2+</sup> ATPase.
ファイル:RyR signal.jpg|'''図1.リアノジン受容体を介するシグナル系'''<br>脳の神経細胞におけるリアノジン受容体(RyRs)を介するシグナル伝達。海馬の錐体細胞ではNMDA型グルタミン酸受容体(NMDAR)、小脳のプルキンエ細胞では電位依存症カルシウムチャネル(VDCC)を介する細胞外からのカルシウム流入による細胞内カルシウム濃度上昇により、Ca<sup>2+</sup>-induced Ca<sup>2+</sup> releaseが起こる。一方、小脳プルキンエ細胞では一酸化窒素(NO)による1型RyR(RyR1)のS-ニトロシル化によりNO-induced Ca<sup>2+</sup>releaseも起こる。ER:endoplasmic reticulum; IP3R:inositol 1,4,5 tris phosphate receptor; SERCA: sarco/endoplasmic reticulum Ca<sup>2+</sup> ATPase.
</gallery>
</gallery>
== 歴史 ==
 カルシウムイオン(Ca<sup>2+</sup>)は普遍的かつ基本的な[[シグナル伝達]]を担う[[セカンドメッセンジャー]]であり、極めて多くの生命現象に関与する。細胞内におけるカルシウムシグナル形成は、[[細胞膜]]に存在するカルシウムチャネルを介して細胞外から細胞内へのカルシウムの流入によるものと、細胞内カルシウムストア(小胞体)からカルシウム放出チャネルを介して細胞質へ放出される2通りの経路による。[[カルシウム誘発性カルシウム放出|カルシウム誘発性カルシウム放出]](Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release; CICR)は、[[細胞質]]側のカルシウム濃度上昇が細胞内ストアから細胞質へのカルシウム放出を促進する現象であり、[[wikipedia:ja:骨格筋|骨格筋]]で最初に見出された<ref><pubmed>5456208</pubmed></ref>。その後、同様の現象が多くの[[wikipedia:ja:興奮性細胞|興奮性細胞]]において見られたことから、CICRは細胞内カルシウムシグナルを増幅するための普遍的な機構であると考えられるようになり、CICRの分子実体であるCICRチャネルの薬理学的性質が調べられた。その結果、植物アルカロイドであるリアノジンがCICRチャネルに特異的に結合し、低濃度ではチャネルを開口状態に固定する薬物であることが示された。
 引き続き、標識リアノジンを用いた結合活性を指標に、骨格筋よりCICRチャネル、即ちリアノジン受容体(RyR)が精製された<ref><pubmed>2448641</pubmed></ref>。その後の遺伝子クローニングにより、少なくとも[[wikipedia:ja:硬骨魚類|硬骨魚類]]以上の[[wikipedia:ja:脊椎動物|脊椎動物]]では、別々の遺伝子にコードされる3種類のRyRサブタイプが存在することが判明し、それぞれ、1型/骨格筋型(RyR1)、2型/心筋型(RyR2)、3型/脳型(RyR3)と呼ばれる<ref><pubmed>9137551</pubmed></ref><ref><pubmed>12777839</pubmed></ref>。各サブタイプは互いに65%程度のアミノ酸配列相同性を示すが、異なる組織分布・脳内分布を示す<ref><pubmed>1330694</pubmed></ref><ref name=ref6><pubmed> 7876312 </pubmed></ref>。一方、[[線虫]]<ref><pubmed>9135117</pubmed></ref>、[[ショウジョウバエ]]<ref><pubmed>8276118</pubmed></ref>においては、どのタイプにも属さないRyR相同物が同定されており、[[wikipedia:ja:無脊椎動物|無脊椎動物]]においては単一遺伝子にコードされていたものが、脊椎動物において組織分布や機能的役割が異なる3種のサブタイプに分子進化したと推測されている。


== 分子構造 ==
== 分子構造 ==

案内メニュー