「アセチル化」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
[[Image:Nm-Kinichinakashima fig 1.png|thumb|350px|'''図1.代表的なアセチル化反応'''<br>代表的なアセチル化反応であるアスピリンの合成反応を示した。円で囲われたサリチル酸の水酸基が無水酢酸との反応によりアセチル基に置換され、アスピリンが合成される。]]  
[[Image:Nm-Kinichinakashima fig 1.png|thumb|350px|'''図1.代表的なアセチル化反応'''<br>代表的なアセチル化反応であるアスピリンの合成反応を示した。円で囲われたサリチル酸の水酸基が無水酢酸との反応によりアセチル基に置換され、アスピリンが合成される。]]  


 アセチル化とは、有機化合物の水酸基(-OH)やアミノ基(-NH2)などの水素原子をアセチル基(-COCH3)で置換することである(図1)。[[IUPAC命名法]]ではエタノイル化という。逆に、有機化合物からアセチル基が除かれる反応は脱アセチル化という。代表的なアセチル化剤として、[[無水酢酸]]、[[塩化アセチル]]、[[酢酸メチル]]、[[N-メチルアセトアミド]]などが使われている。  
 アセチル化とは、[[wikipedia:ja:有機化合物|有機化合物]]の[[wikipedia:ja:水酸基|水酸基]](-OH)や[[wikipedia:ja:アミノ基|アミノ基]](-NH<sub>2</sub>)などの[[wikipedia:ja:水素|水素]]原子を[[wikipedia:ja:アセチル基|アセチル基]](-COCH<sub>3</sub>)で置換することである(図1)。[[wikipedia:ja:IUPAC命名法|IUPAC命名法]]では[[wikipedia:ja:エタノイル化|エタノイル化]]という。逆に、有機化合物からアセチル基が除かれる反応は脱アセチル化という。代表的なアセチル化剤として、[[wikipedia:ja:無水酢酸|無水酢酸]]、[[wikipedia:ja:塩化アセチル|塩化アセチル]]、[[wikipedia:ja:酢酸メチル|酢酸メチル]]、[[wikipedia:ja:N-メチルアセトアミド|N-メチルアセトアミド]]などが使われている。  


== タンパク質のアセチル化 ==
== タンパク質のアセチル化 ==


[[Image:Nm-Kinichinakashima fig 2.png|thumb|350px|'''図2.ヒストンのアセチル化、脱アセチル化による転写活性状態の変化'''<br>
[[Image:Nm-Kinichinakashima fig 2.png|thumb|350px|'''図2.ヒストンのアセチル化、脱アセチル化による転写活性状態の変化'''<br>
ヒストンがHATによりアセチル化された状態ではヒストン-DNA間の結合が緩むことで、TFやPolⅡの結合が可能となり、転写は活性化される。逆にHDACにより、ヒストンが脱アセチル化されるとTF、PolⅡが結合出来ないため転写は抑制される。<br>GTF:general transcription factor:基本転写因子群、Ac:acetylation:アセチル化]]  タンパク質のアセチル化は、[[クロマチン]]の構造制御や転写活性制御に重要な働きをしている。転写活性化に働く[[補因子]]の多くがアセチル化酵素活性を持っており、逆に転写抑制に働く補因子の多くは脱アセチル化酵素活性を有する。
ヒストンがHATによりアセチル化された状態ではヒストン-DNA間の結合が緩むことで、TFやPolⅡの結合が可能となり、転写は活性化される。逆にHDACにより、ヒストンが脱アセチル化されるとTF、PolⅡが結合出来ないため転写は抑制される。<br>GTF:general transcription factor:基本転写因子群、Ac:acetylation:アセチル化]]
 
 タンパク質のアセチル化は、[[wikipedia:ja:クロマチン|クロマチン]]の構造制御や[[wikipedia:ja:転写活性|転写活性]]制御に重要な働きをしている。転写活性化に働く[[wikipedia:ja:補因子|補因子]]の多くが[[アセチル化酵素]]活性を持っており、逆に転写抑制に働く補因子の多くは[[脱アセチル化酵素]]活性を有する。


=== ヒストン ===
=== ヒストン ===


 タンパク質のアセチル化において最も多く報告されているのが[[ヒストン]]のアセチル化及び脱アセチル化である。これらは遺伝子の発現制御に密接に関わっている。ヒストンはアセチル化されることでヒストン中の特定のリジン残基のアミノ基(-NH2(-NH3<sup>+</sup>))をアセトアミド(-NHCOCH3)に変換することにより電荷を中和し、ヒストン-DNA間の結合を部分的に弱める。これにより、DNA鎖に対して転写因子や[[RNAポリメラーゼ]](PolⅡ)がより結合しやすい状態になり、結果として転写が活性化される。逆に、ヒストンが脱アセチル化されるとアセチル基が[[加水分解]]により除去され、元のアミノ基に戻ることによりヒストンへのDNAの巻きつきが強められ転写が抑制される(図2)。  
 タンパク質のアセチル化において最も多く報告されているのがヒストンのアセチル化及び脱アセチル化である。これらは[[wikipedia:ja:遺伝子の発現|遺伝子の発現]]制御に密接に関わっている。ヒストンはアセチル化されることでヒストン中の特定の[[wikipedia:ja:リジン|リジン]]残基のアミノ基(-NH<sub>2</sub>(-NH3<sup>+</sup>))をアセト[[wikipedia:ja:アミド|アミド]](-NHCOCH<sub>3</sub>)に変換することにより電荷を中和し、ヒストン-DNA間の結合を部分的に弱める。これにより、DNA鎖に対して転写因子や[[wikipedia:ja:RNAポリメラーゼ|RNAポリメラーゼ]]([[wikipedia:PolⅡ|PolⅡ]])がより結合しやすい状態になり、結果として転写が活性化される。逆に、ヒストンが脱アセチル化されるとアセチル基が[[wikipedia:ja:加水分解|加水分解]]により除去され、元のアミノ基に戻ることによりヒストンへのDNAの巻きつきが強められ転写が抑制される(図2)。  


==== ヒストンアセチル基転移酵素 ====
==== ヒストンアセチル基転移酵素 ====
26行目: 28行目:
=== 非ヒストンタンパク質 ===
=== 非ヒストンタンパク質 ===


 その他にも、[[P53]] 、[[E2F]]、[[MyoD]]、[[STAT3]]など数多くの非ヒストンタンパク質もまた、部位特異的にアセチル化されることが知られている<ref name="ref1"><pubmed>18804549</pubmed></ref>(表1、2)。アセチル化により、これらタンパク質の安定性や分解をはじめ、活性や局在、特異的相互作用などが制御され、転写、増殖、[[アポトーシス]]、分化など、細胞の様々な過程がコントロールされている。現在では、ヒストンおよび非ヒストンタンパク質のアセチル化が、[[メチル化]]や[[リン酸化]]など他の修飾とクロストークし、最終的なシグナル発現に重要な働きをしていることが明らかとなっている。いくつかの修飾がある決まった順序で組み合わさることが、ある機能発現には必要であり、一方では、互いに阻害し合うこともある。このように組み合わせを変えることで、細胞内情報伝達のネットワークの多様性を生み出している<ref><pubmed>18722172</pubmed></ref>。  
 その他にも、[[wikipedia:P53|P53]] 、[[wikipedia:E2F|E2F]]、[[wikipedia:MyoD|MyoD]]、[[wikipedia:STAT3|STAT3]]など数多くの非ヒストンタンパク質もまた、部位特異的にアセチル化されることが知られている<ref name="ref1"><pubmed>18804549</pubmed></ref>(表1、2)。アセチル化により、これらタンパク質の安定性や分解をはじめ、活性や局在、特異的相互作用などが制御され、転写、[[増殖]]、[[アポトーシス]]、[[分化]]など、細胞の様々な過程がコントロールされている。現在では、ヒストンおよび非ヒストンタンパク質のアセチル化が、[[メチル化]]や[[リン酸化]]など他の修飾とクロストークし、最終的なシグナル発現に重要な働きをしていることが明らかとなっている。いくつかの修飾がある決まった順序で組み合わさることが、ある機能発現には必要であり、一方では、互いに阻害し合うこともある。このように組み合わせを変えることで、細胞内情報伝達のネットワークの多様性を生み出している<ref><pubmed>18722172</pubmed></ref>。  


{| border="1" cellpadding="1" style="width:100%"
{| border="1" cellpadding="1" style="width:100%"
|+ '''表1:代表的なアセチル化酵素<ref name="ref1" />'''
|+ '''表1:代表的なアセチル化酵素<ref name="ref1" />'''
|-
|-
| ACTR、ATF-2、CBP、CDY、CLOCK、EWI、Elp3、GCN5L、GRIP、HAT1、HBO1、MCM3AP、MORF、MOZ、p300、PCAF、p/CIP、SRC-1、hTAFII250、TFIIB、Tip60 
| [[ACTR]]、[[ATF-2]]、[[CBP]]、[[CDY]]、[[CLOCK]]、[[EWI]]、[[Elp3]]、[[GCN5L]]、[[GRIP]]、[[HAT1]]、[[HBO1]]、[[MCM3AP]]、[[MORF]]、[[MOZ]]、[[p300]]、[[PCAF]]、[[p/CIP]]、[[SRC-1]]、[[hTAFII250]]、[[TFIIB]]、[[Tip60]] 
|}
|}


37行目: 39行目:
|+ '''表2:代表的なアセチル化される非ヒストンタンパク質<ref name="ref1" />'''
|+ '''表2:代表的なアセチル化される非ヒストンタンパク質<ref name="ref1" />'''
|-
|-
| Acetyl-CoA Synthetase、ACTR、AP endonuclease、AR、ATM、Brm、E2F1, -2, -3、EKLF、ERα、FoxO1, 2, 3、GATA1、HIF-1α、HMG A1、HSP90、Importin-α、Ku70、MEF2A、[[ミトコンドリア]]タンパク質、MyoD、c-Myb、c-Myc、NF-κB、p21、p53、p73、p300、PCNA、PGC-1α、PR、STAT3    
| [[Acetyl-CoA Synthetase]]、[[ACTR]]、[[AP endonuclease]]、[[AR]]、[[ATM]]、[[Brm]]、[[E2F1]], [[-2]], [[-3]]、[[EKLF]]、[[ERα]]、[[FoxO1]], [[2]], [[3]]、[[GATA1]]、[[HIF-1α]]、[[HMG A1]]、[[HSP90]]、[[Importin-α]]、[[Ku70]]、[[MEF2A]]、[[ミトコンドリアタンパク質]]、[[MyoD]]、[[c-Myb]]、[[c-Myc]]、[[NF-κB]]、[[p21]]、[[p53]]、[[p73]]、[[p300]]、[[PCNA]]、[[PGC-1α]]、[[PR]]、[[STAT3]]    
|}
|}


49行目: 51行目:
| style="text-align:center" | 減少
| style="text-align:center" | 減少
|-
|-
| style="text-align:center" | p53, p73, Smad7, c-Myc, Runx3, AR, H2A.z, E2F1, NF-E4, ER81, SREBP1a, HNF6, BACE1  
| style="text-align:center" | p53, p73, [[Smad7]], c-Myc, [[Runx3]], AR, [[H2A.z]], E2F1, [[NF-E4]], [[ER81]], [[SREBP1a]], [[HNF6]], [[BACE1]]
| style="text-align:center" | GATA1, HIF-1α, pRb
| style="text-align:center" | [[GATA1]], HIF-1α, [[pRb]]
|-
|-
| colspan="2" style="text-align:center" | '''DNAへの結合'''
| colspan="2" style="text-align:center" | '''DNAへの結合'''
57行目: 59行目:
| style="text-align:center" | 減少
| style="text-align:center" | 減少
|-
|-
| style="text-align:center" | p53, SRY, STAT3, GATA, E2F1, p50 (NF-κB), ERα, p65 (NF-κB), c-Myb, MyoD, HNF-4, AML1, BETA2, NF-E2, KLF13, TAL1/SCL, TAF(I)68, AP endonuclease  
| style="text-align:center" | p53, [[SRY]], STAT3, GATA, E2F1, [[p50]] (NF-κB), [[ERα]], [[p65]] (NF-κB), c-Myb, MyoD, [[HNF-4]], [[AML1]], [[BETA2]], [[NF-E2]], [[KLF13]], [[TAL1]]/[[SCL]], [[TAF(I)68]], [[AP endonuclease]]
| style="text-align:center" | YY1, HMG-A1, HMG-N2, p65 (NF-κB), DEK, KLF13, Fen-1
| style="text-align:center" | [[YY1]], HMG-A1, [[HMG-N2]], [[p65]] (NF-κB), [[DEK]], [[KLF13]], [[Fen-1]]
|-
|-
| colspan="2" style="text-align:center" | '''遺伝子の発現'''
| colspan="2" style="text-align:center" | '''遺伝子の発現'''
65行目: 67行目:
| style="text-align:center" | 転写抑制
| style="text-align:center" | 転写抑制
|-
|-
| style="text-align:center" | p53, HMG-A1, STAT3, AR, ERα (basal), GATA, EKLF, MyoD, E2F1, p65 (NF-κB), GR, p73, PGC1α, MEF2D, GCMa, PLAG1, PLAG2, Bcl-6, β-Catenin, KLF5, Sp1, BETA2, Cart1, RIP140, TAF(I)68  
| style="text-align:center" | p53, [[HMG-A1]], STAT3, AR, ERα (basal), GATA, [[EKLF]], MyoD, E2F1, p65 (NF-κB), [[GR]], p73, PGC1α, [[MEF2D]], [[GCMa]], [[PLAG1]], [[PLAG2]], [[Bcl-6]], [[β-カテニン]], [[KLF5]], [[Sp1]], [[BETA2]], [[Cart1]], [[RIP140]], [[TAF(I)68]]
| style="text-align:center" | Erα (ligand-bound), HIF-1α, STAT1, FOXO1, FOXO4, RIP140
| style="text-align:center" | ERα (ligand-bound), HIF-1α, [[STAT1]], [[FOXO1]], [[FOXO4]], [[RIP140]]
|-
|-
| colspan="2" style="text-align:center" | '''タンパク質との相互作用'''
| colspan="2" style="text-align:center" | '''タンパク質との相互作用'''
73行目: 75行目:
| style="text-align:center" | 抑制
| style="text-align:center" | 抑制
|-
|-
| style="text-align:center" | STAT3, AR, EKLF, Importin A, STAT1, TFIIB, α-Tubulin, actin, cortactin
| style="text-align:center" | STAT3, AR, [[EKLF]], Importin A, STAT1, TFIIB, α-[[チュブリン]], [[アクチン]], [[コータクチン]]
| style="text-align:center" | p65 (RelA), Ku70, HSP90
| style="text-align:center" | [[p65]] ([[RelA]]), [[Ku70]], [[HSP90]]
|-
|-
| colspan="2" style="text-align:center" | '''局在化'''
| colspan="2" style="text-align:center" | '''局在化'''
81行目: 83行目:
| style="text-align:center" | アセチル化→細胞質ゾル
| style="text-align:center" | アセチル化→細胞質ゾル
|-
|-
| style="text-align:center" | PCAF, SRY, CtBP2, POP-1, HNF-4, PCNA  
| style="text-align:center" | [[PCAF]], SRY, [[CtBP2]], [[POP-1]], [[HNF-4]], [[PCNA]]
| style="text-align:center" | c-Abl, p300, PAP
| style="text-align:center" | [[c-Abl]], p300, PAP
|-
|-
| colspan="2" style="text-align:center" | '''mRNAの安定性'''
| colspan="2" style="text-align:center" | '''mRNAの安定性'''
89行目: 91行目:
| style="text-align:center" | 減少
| style="text-align:center" | 減少
|-
|-
| style="text-align:center" | p21, Brm  
| style="text-align:center" | [[p21]], [[Brm]]
| style="text-align:center" | [[チロシン水酸化酵素]] (TH), eNOS
| style="text-align:center" | [[チロシン水酸化酵素]] (TH), [[eNOS]]
|-
|-
| colspan="2" style="text-align:center" | '''酵素活性'''
| colspan="2" style="text-align:center" | '''酵素活性'''
97行目: 99行目:
| style="text-align:center" | 減少
| style="text-align:center" | 減少
|-
|-
| style="text-align:center" | p300, ATM  
| style="text-align:center" | p300, [[ATM]]
| style="text-align:center" | PTEN, HDAC1, Mdm2, ACS, Neil2, Polβ
| style="text-align:center" | [[PTEN]], [[HDAC1]], [[Mdm2]], [[ACS]], [[Neil2]], [[Polβ]]
|}
|}


193行目: 195行目:
=== ヒストンアセチル化と神経機能 ===
=== ヒストンアセチル化と神経機能 ===


 哺乳類においてヒストンのアセチル化、脱アセチル化、及びHAT、HDACの活性は[[シナプス]]の[[可塑性]]や記憶の形成に関与する。[[NMDA型グルタミン酸受容体]]の活性化及びそれに伴う[[PKA(protein kinase A)]][[PKC(protein kinase C)]]経路の活性化はヒストンH3のアセチル化を誘導し<ref name="ref3"><pubmed>18003853</pubmed></ref>、海馬神経のKClによる[[脱分極]]はヒストンH2Bのアセチル化を促進する<ref><pubmed>20167251</pubmed></ref>。さらに、マウスでの記憶学習訓練もヒストンH3のアセチル化を誘導することが知られている<ref name="ref3" /><ref><pubmed>18638560</pubmed></ref>。また、[[恐怖条件付け]]が[[脳由来神経栄養因子(brain-derived neurotrophic factor:BDNF)]]プロモーター領域のヒストンH3のアセチル化と[[ホスホアセチル化]]を亢進することが報告されている<ref name="ref6"><pubmed>17522015</pubmed></ref><ref><pubmed>18923034</pubmed></ref>。ヒストンH3のアセチル化亢進は記憶の再固定や想起の際に誘導されることも明らかになっており、ヒストンのアセチル化が記憶に密接に関わっていることが示されている<ref><pubmed>17880897</pubmed></ref>。同様にHDACやHATの活性も神経機能に重要である。HDACの阻害は、シナプス間での神経伝達物質の伝達効率の指標であり、学習・記憶に重要とされる[[長期増強]](long-term potentiation:LTP)や記憶形成を増強させ<ref><pubmed>19424149</pubmed></ref><ref><pubmed>19470462</pubmed></ref>、恐怖条件付けによる恐怖の消去を促進させる<ref name="ref6" /><ref><pubmed>17907845</pubmed></ref>。代表的なHATであるCBPの変異マウスはLTP及び記憶形成が障害を受け<ref><pubmed>15805310</pubmed></ref>、抑制性の切断型p300の[[トランスジェニックマウス]]やPCAF欠損マウスでは記憶障害が起こることが報告されている<ref><pubmed>17761541</pubmed></ref><ref><pubmed>17805310</pubmed></ref>。さらに、重度の脳萎縮、及び神経脱落を起こしたマウスにHDAC阻害剤を投与すると、[[樹状突起]]の再形成と[[シナプス]]の増加が観察され、学習能力や長期記憶が回復することが明らかになっている<ref><pubmed>17468743</pubmed></ref>。これらのように、シナプス可塑性(LTP)や記憶形成においてヒストンのアセチル化とそれを制御する酵素は非常に重要な役割を果たしている。  
 哺乳類においてヒストンのアセチル化、脱アセチル化、及びHAT、HDACの活性は[[シナプス]]の[[可塑性]]や記憶の形成に関与する。[[NMDA型グルタミン酸受容体]]の活性化及びそれに伴う[[protein kinase A]][[PKA]])、[[protein kinase C]]([[PKC]])経路の活性化はヒストンH3のアセチル化を誘導し<ref name="ref3"><pubmed>18003853</pubmed></ref>、海馬神経のKClによる[[脱分極]]はヒストンH2Bのアセチル化を促進する<ref><pubmed>20167251</pubmed></ref>。さらに、マウスでの記憶学習訓練もヒストンH3のアセチル化を誘導することが知られている<ref name="ref3" /><ref><pubmed>18638560</pubmed></ref>。また、[[恐怖条件付け]]が[[脳由来神経栄養因子]]([[brain-derived neurotrophic factor]]:[[BDNF]])[[プロモーター]]領域のヒストンH3のアセチル化と[[ホスホアセチル化]]を亢進することが報告されている<ref name="ref6"><pubmed>17522015</pubmed></ref><ref><pubmed>18923034</pubmed></ref>。ヒストンH3のアセチル化亢進は[[記憶]]の[[再固定]]や[[想起]]の際に誘導されることも明らかになっており、ヒストンのアセチル化が記憶に密接に関わっていることが示されている<ref><pubmed>17880897</pubmed></ref>。同様にHDACやHATの活性も神経機能に重要である。HDACの阻害は、シナプス間での神経伝達物質の伝達効率の指標であり、学習・記憶に重要とされる[[長期増強]](long-term potentiation:LTP)や記憶形成を増強させ<ref><pubmed>19424149</pubmed></ref><ref><pubmed>19470462</pubmed></ref>、恐怖条件付けによる恐怖の消去を促進させる<ref name="ref6" /><ref><pubmed>17907845</pubmed></ref>。代表的なHATであるCBPの変異マウスはLTP及び記憶形成が障害を受け<ref><pubmed>15805310</pubmed></ref>、抑制性の切断型p300の[[トランスジェニックマウス]]やPCAF欠損マウスでは記憶障害が起こることが報告されている<ref><pubmed>17761541</pubmed></ref><ref><pubmed>17805310</pubmed></ref>。さらに、重度の脳萎縮、及び神経脱落を起こしたマウスにHDAC阻害剤を投与すると、[[樹状突起]]の再形成と[[シナプス]]の増加が観察され、学習能力や長期記憶が回復することが明らかになっている<ref><pubmed>17468743</pubmed></ref>。これらのように、シナプス可塑性(LTP)や記憶形成においてヒストンのアセチル化とそれを制御する酵素は非常に重要な役割を果たしている。  


=== ヒストンアセチル化と神経疾患 ===
=== ヒストンアセチル化と神経疾患 ===


 [[Image:Nm-Kinichinakashima fig 3.png|thumb|300px|'''図3.神経変性状態でのHDAC阻害剤の働き'''<br>HDAC阻害剤は神経変性状態におけるヒストンの低アセチル化状態を改善し、結果的に種々のタンパク質の発現を上昇させる。また、微小管タンパク質を高アセチル化状態にすることで微小管輸送を上昇させ、BDNFの細胞外放出を促進させる。これらによりHDAC阻害剤は神経保護、神経栄養、抗炎症、学習記憶の上昇等を示し、神経変性状態を改善する。<br>Bcl-2:B-cell lymphoma 2:B細胞リンパ腫2、BDNF:brain-derived neurotrophic factor:脳由来神経栄養因子、GAPDH:glycelaldehyde-3-phosphate dehydrogenase:グリセルアルデヒド3リン酸脱水素酵素、GDNF:glial cell line-derived neurotrophic factor:グリア細胞由来神経栄養因子、HSP70:heat shock protein 70:熱ショックタンパク質70]]HDACはヒストンタンパク質のアセチル化状態の恒常性を維持することで転写等の細胞の基本的な活性を制御するのに重要な役割を果たしており、多くの脳疾患でタンパク質のアセチル化レベルが不均衡となっていることが知られている。このような点からも種々のHDAC阻害剤が新たな脳疾患治療薬として有用である可能性が示唆されている。HDAC阻害剤は神経保護、神経栄養性、及び抗炎症の特徴を有し、学習記憶や脳疾患にみられる他の表現型などを改善できることが示されている<ref><pubmed>18827828</pubmed></ref><ref><pubmed>19775759</pubmed></ref>(図3)。具体的には、[[脳卒中|脳卒中]]脳血管障害、[[ハンチントン病]]、[[筋萎縮性側索硬化症]]、[[脊髄性筋委縮症]]、[[パーキンソン病]]、[[アルツハイマー病]]、[[ルビンシュタイン・テイビ症候群]]、[[レット症候群]]、[[フリードリッヒ運動失調症]]、[[多発性硬化症]]などが挙げられ、多くの脳疾患でヒストンの低アセチル化及び転写の機能障害が起こっている。    ヒストンのアセチル化が関与する脳疾患の例を以下に示す。
 [[Image:Nm-Kinichinakashima fig 3.png|thumb|300px|'''図3.神経変性状態でのHDAC阻害剤の働き'''<br>HDAC阻害剤は神経変性状態におけるヒストンの低アセチル化状態を改善し、結果的に種々のタンパク質の発現を上昇させる。また、微小管タンパク質を高アセチル化状態にすることで微小管輸送を上昇させ、BDNFの細胞外放出を促進させる。これらによりHDAC阻害剤は神経保護、神経栄養、抗炎症、学習記憶の上昇等を示し、神経変性状態を改善する。<br>Bcl-2:B-cell lymphoma 2:B細胞リンパ腫2、BDNF:brain-derived neurotrophic factor:脳由来神経栄養因子、GAPDH:glycelaldehyde-3-phosphate dehydrogenase:グリセルアルデヒド3リン酸脱水素酵素、GDNF:glial cell line-derived neurotrophic factor:グリア細胞由来神経栄養因子、HSP70:heat shock protein 70:熱ショックタンパク質70]]
 
 HDACはヒストンタンパク質のアセチル化状態の恒常性を維持することで転写等の細胞の基本的な活性を制御するのに重要な役割を果たしており、多くの脳疾患でタンパク質のアセチル化レベルが不均衡となっていることが知られている。このような点からも種々のHDAC阻害剤が新たな脳疾患治療薬として有用である可能性が示唆されている。HDAC阻害剤は神経保護、神経栄養性、及び抗炎症の特徴を有し、学習記憶や脳疾患にみられる他の表現型などを改善できることが示されている<ref><pubmed>18827828</pubmed></ref><ref><pubmed>19775759</pubmed></ref>(図3)。具体的には、[[脳卒中|脳卒中]]脳血管障害、[[ハンチントン病]]、[[筋萎縮性側索硬化症]]、[[脊髄性筋委縮症]]、[[パーキンソン病]]、[[アルツハイマー病]]、[[ルビンシュタイン・テイビ症候群]]、[[レット症候群]]、[[フリードリッヒ運動失調症]]、[[多発性硬化症]]などが挙げられ、多くの脳疾患でヒストンの低アセチル化及び転写の機能障害が起こっている。ヒストンのアセチル化が関与する脳疾患の例を以下に示す。


==== ルビンシュタイン・テイビ症候群 ====
==== ルビンシュタイン・テイビ症候群 ====


 ルビンシュタイン・テイビ症候群はHATとしての機能をもつCBPやp300の変異により引き起こされ、精神遅滞や記憶障害を示す脳疾患である<ref><pubmed>7630403</pubmed></ref>。CBPのヘテロ欠損マウスは発達遅滞や骨格異常がみられ<ref><pubmed>15207239</pubmed></ref>、クロマチンのアセチル化の欠損、及びLTPの障害などを示す<ref><pubmed>17543037</pubmed></ref>。近年の研究により、HDAC阻害剤であるTSAを投与することでLTPの障害による長期記憶能低下の改善、及びシナプス可塑性の回復がみられることが明らかになっている<ref><pubmed>17553985</pubmed></ref>。このような研究結果から、HDAC阻害剤がルビンシュタイン・テイビ症候群治療の選択肢のひとつとして考えられている。  
 ルビンシュタイン・テイビ症候群はHATとしての機能をもつCBPやp300の変異により引き起こされ、[[精神遅滞]]や記憶障害を示す脳疾患である<ref><pubmed>7630403</pubmed></ref>。CBPのヘテロ欠損マウスは[[発達遅滞]]や骨格異常がみられ<ref><pubmed>15207239</pubmed></ref>、クロマチンのアセチル化の欠損、及びLTPの障害などを示す<ref><pubmed>17543037</pubmed></ref>。近年の研究により、HDAC阻害剤であるトリコスタチンAを投与することでLTPの障害による長期記憶能低下の改善、及びシナプス可塑性の回復がみられることが明らかになっている<ref><pubmed>17553985</pubmed></ref>。このような研究結果から、HDAC阻害剤がルビンシュタイン・テイビ症候群治療の選択肢のひとつとして考えられている。  


==== パーキンソン病 ====
==== パーキンソン病 ====


 パーキンソン病は神経変性疾患で、[[黒質]]での[[ドーパミン神経]]の選択的欠損に伴う運動機能障害を特徴としている。パーキンソン病の大部分は孤発性である。ドーパミン毒素によりパーキンソン病様症状を呈したモデル動物に、HDAC阻害剤の[[フェニルブチレート]]を投与すると、黒質でのドーパミンの欠乏とドーパミンの生合成酵素である[[チロシンヒドロキシラーゼ]]を発現する神経の減少が抑制される<ref><pubmed>15626823</pubmed></ref>。また、HDAC阻害剤の投与により[[中脳]]の[[アストロサイ]]トで誘導される[[グリア細胞由来神経栄養因子(glial cell line-derived neurotrophic factor:GDNF)]]は、ドーパミン神経特異的に生存と軸索伸長に作用する因子である(図3)。そのため、HDAC阻害剤投与はパーキンソン病を含む[[神経変性疾患]]の治療において有望な治療法となると考えられている<ref><pubmed>11988777</pubmed></ref>。  
 パーキンソン病は[[神経変性疾患]]で、[[黒質]]での[[ドーパミン神経]]の選択的欠損に伴う運動機能障害を特徴としている。パーキンソン病の大部分は孤発性である。ドーパミン毒素によりパーキンソン病様症状を呈したモデル動物に、HDAC阻害剤の[[フェニルブチレート]]を投与すると、黒質でのドーパミンの欠乏とドーパミンの生合成酵素である[[チロシン水酸化酵素]]を発現する神経の減少が抑制される<ref><pubmed>15626823</pubmed></ref>。また、HDAC阻害剤の投与により[[中脳]]の[[アストロサイト]]で誘導される[[グリア細胞由来神経栄養因子]][[glial cell line-derived neurotrophic factor]][[GDNF]])は、ドーパミン神経特異的に生存と[[軸索伸長]]に作用する因子である(図3)。そのため、HDAC阻害剤投与はパーキンソン病を含む神経変性疾患の治療において有望な治療法となると考えられている<ref><pubmed>11988777</pubmed></ref>。  


 家族性のパーキンソン病ではシナプス前タンパク質である[[Α-シヌクレイン]]の遺伝子変異が原因のひとつとされている。[[ヒト神経芽腫細胞]]において、α-シヌクレインはヒストンに結合し、HATであるCBPやp300、PCAFを不活性化することでヒストンの低アセチル化、及びアポトーシスを引き起こすことが示されている<ref name="ref24"><pubmed>16959795</pubmed></ref>。現在までの研究により、HDAC阻害剤のSBやSAHAの投与が、in vitro、in vivo両方においてα-シヌクレインの過剰発現による神経細胞死を減弱させることが明らかとなっている<ref name="ref24" />。これらのことも、パーキンソン病においてHDAC阻害剤が治療に有効であると考えられる根拠となっている。  
 家族性のパーキンソン病では[[シナプス前]]タンパク質である[[Α-シヌクレイン]]の遺伝子変異が原因のひとつとされている。ヒト[[神経芽腫細胞]]において、α-シヌクレインはヒストンに結合し、HATであるCBPやp300、PCAFを不活性化することでヒストンの低アセチル化、及び[[アポトーシス]]を引き起こすことが示されている<ref name="ref24"><pubmed>16959795</pubmed></ref>。現在までの研究により、HDAC阻害剤のSBやSAHAの投与が、in vitro、in vivo両方においてα-シヌクレインの過剰発現による神経細胞死を減弱させることが明らかとなっている<ref name="ref24" />。これらのことも、パーキンソン病においてHDAC阻害剤が治療に有効であると考えられる根拠となっている。  


==== 脳血管障害 ====
==== 脳血管障害 ====


 脳血管障害は急性の神経変性疾患であり日本では死因の第三位を占めている。脳血管障害の一つの大きな原因として脳虚血が挙げられる。脳虚血のモデル動物は[[中大脳動脈閉塞術(midle cerebral artery occlusion:MCAO)]]により作成することができる。ラット及びマウスのMCAOモデルでは、虚血脳全体のヒストンのリジン残基でアセチル化が抑制されるが、この変化はHDAC阻害剤の投与により梗塞体積の減少と共に回復される<ref name="ref25"><pubmed>15189338</pubmed></ref><ref name="ref26"><pubmed>17371805</pubmed></ref><ref name="ref27"><pubmed>16946032</pubmed></ref>。ラットのMCAOモデルでは傷害後のVPA、SB、TSAの投与により、状態の改善がみられることが示されている<ref name="ref25" /><ref name="ref26" />。SBを投与したMCAOラットでは虚血脳で、[[神経新生]]の増加が確認されるが、これはBDNF-TrkBの経路を遮断すると消失してしまう<ref><pubmed>19549282</pubmed></ref>。さらに、マウスへのフェニルブチレートの投与は[[EIF2α(eukaryotic translation initiation factor2α)]]のリン酸化減少とeIF2αに制御される[[CHOP(C/EBP homologous protein)]]の発現によって[[ERストレス(endoplasmic reticulum stress)]]から虚血脳を保護できることが報告されている<ref><pubmed>15226415</pubmed></ref>。HDAC阻害剤の投与は虚血によって引き起こされるp53の発現上昇を抑制し、[[HSP70(heat-shock protein 70)]]の発現を誘導することが知られている<ref name="ref25" /><ref name="ref26" /><ref name="ref27" />(図3)。HSP70はマウスMCAOモデルでHSP70- I-κBα- NF-κB(nuclear factor-kappa B)の安定な複合体を形成することにより、 NF-κBを不活性化することで抗炎症作用を示すことが明らかにされている<ref><pubmed>17473852</pubmed></ref>。<br>  
 [[脳血管障害]]は急性の神経変性疾患であり日本では死因の第三位を占めている。脳血管障害の一つの大きな原因として[[脳虚血]]が挙げられる。脳虚血のモデル動物は[[中大脳動脈閉塞術]]([[midle cerebral artery occlusion]]:[[MCAO]])により作成することができる。[[wikipedia:ja:ラット|ラット]]及び[[wikipedia:ja:マウス|マウス]]のMCAOモデルでは、虚血脳全体のヒストンのリジン残基でアセチル化が抑制されるが、この変化はHDAC阻害剤の投与により梗塞体積の減少と共に回復される<ref name="ref25"><pubmed>15189338</pubmed></ref><ref name="ref26"><pubmed>17371805</pubmed></ref><ref name="ref27"><pubmed>16946032</pubmed></ref>。ラットのMCAOモデルでは傷害後のVPA、SB、TSAの投与により、状態の改善がみられることが示されている<ref name="ref25" /><ref name="ref26" />。SBを投与したMCAOラットでは虚血脳で、[[神経新生]]の増加が確認されるが、これは[[BDNF]]-[[TrkB]]の経路を遮断すると消失してしまう<ref><pubmed>19549282</pubmed></ref>
 
 さらに、マウスへの[[フェニルブチレート]]の投与は[[eukaryotic translation initiation factor2α]]([[EIF2α]])のリン酸化減少とeIF2αに制御される[[C/EBP homologous protein]]([[CHOP]])の発現によって[[ERストレス]]([[endoplasmic reticulum stress]])から虚血脳を保護できることが報告されている<ref><pubmed>15226415</pubmed></ref>。HDAC阻害剤の投与は虚血によって引き起こされるp53の発現上昇を抑制し、[[heat-shock protein 70]]([[HSP70]])の発現を誘導することが知られている<ref name="ref25" /><ref name="ref26" /><ref name="ref27" />(図3)。HSP70はマウスMCAOモデルでHSP70- I-κBα- NF-κB(nuclear factor-kappa B)の安定な複合体を形成することにより、 NF-κBを不活性化することで抗炎症作用を示すことが明らかにされている<ref><pubmed>17473852</pubmed></ref>。<br>  


 細胞骨格タンパク質の発現は虚血条件においてHDAC阻害による神経保護効果と関連している。例としてHDACの阻害は[[アクチンフィラメント]]の構成に重要な[[ゲルソリンタンパク質]]を増加させ、虚血傷害から神経を保護する<ref><pubmed>18234195</pubmed></ref>。加えてVPAはHDAC阻害と転写活性化、及び[[Fas-L(fas ligand protein)]][[IL-6(interleukin-6)]][[MMP-9(matrix metalloproteinase-9)]]を含む[[炎症誘発性因子]]の発現を抑制して抗炎症効果を示すことにより、脳血管障害の脳内出血モデルにおいて神経保護を示す<ref><pubmed>17398106</pubmed></ref>。以上の報告より、急性の神経疾患においてもHDACの阻害が効果的であることが示されている。  
 [[細胞骨格]]タンパク質の発現は虚血条件においてHDAC阻害による神経保護効果と関連している。例としてHDACの阻害は[[アクチン]]フィラメントの構成に重要な[[ゲルソリン]]タンパク質を増加させ、虚血傷害から神経を保護する<ref><pubmed>18234195</pubmed></ref>。加えてVPAはHDAC阻害と転写活性化、及び[[fas ligand protein]]([[Fas-L]])、[[interleukin-6]][[IL-6]])、[[matrix metalloproteinase-9]][[MMP-9]])を含む炎症誘発性因子発現を抑制して抗炎症効果を示すことにより、脳血管障害の脳内出血モデルにおいて神経保護を示す<ref><pubmed>17398106</pubmed></ref>。以上の報告より、急性の神経疾患においてもHDACの阻害が効果的であることが示されている。  


 本文では以上3つの例を紹介したが、これらの例からも、脳機能においてヒストンのアセチル化は重要な役割を担い、HDAC阻害剤は脳疾患治療薬として有用であると考えられる。
 本文では以上3つの例を紹介したが、これらの例からも、脳機能においてヒストンのアセチル化は重要な役割を担い、HDAC阻害剤は脳疾患治療薬として有用であると考えられる。
219行目: 225行目:
== 非ヒストンタンパク質のアセチル化と神経機能・神経疾患 ==
== 非ヒストンタンパク質のアセチル化と神経機能・神経疾患 ==


 上述してきたように、一般にHDACの阻害は脳疾患治療に有用であると思われる。しかし、HDAC6のようにHDACの働きが脳機能に重要であることも知られており、HDACの阻害が常によい方向に働くとは限らない。HDAC6は脳で高く発現しており、ヒストンのみならず[[Α-tubulin]]、[[HSP90]]、[[コルタクチン]]を脱アセチル化する。なかでもHDAC6の主要な基質はα-tubulinであり、α-tubulinのアセチル化レベルを制御することで[[微小管]]の安定性をコントロールし、その輸送等に重要な役割を果たすことが報告されている<ref name="ref34"><pubmed>12486003</pubmed></ref><ref><pubmed>20520769</pubmed></ref>。微小管のアセチル化が促進されると、神経細胞において微小管と[[キネシン]]-1との結合が促進され、[[JNK-interacting Protein 1]]やBDNFなどのキネシン-1の[[カーゴタンパク質]]の[[極性輸送]]が促進される<ref><pubmed>17084703</pubmed></ref>。HDAC6による微小管の安定性制御は神経細胞におけるキネシン-1による[[ミトコンドリア]]の輸送にも重要であり<ref name="ref34" /><ref><pubmed>16306220</pubmed></ref>、異常なミトコンドリア輸送は、アルツハイマー病、パーキンソン病、ハンチントン病、筋委縮性側鎖硬化症などの脳疾患に関係することが知られている<ref><pubmed>22750523</pubmed></ref>。また、HDAC6は軸索の末端領域に局在することで軸索の伸長にも重要な役割を果たしており、TSAなどのHDAC阻害剤によるtubulinの脱アセチル化阻害は軸索の伸長を阻害することが報告されている<ref><pubmed>20886111</pubmed></ref>。<br>  
 上述してきたように、一般にHDACの阻害は脳疾患治療に有用であると思われる。しかし、HDAC6のようにHDACの働きが脳機能に重要であることも知られており、HDACの阻害が常によい方向に働くとは限らない。HDAC6は脳で高く発現しており、ヒストンのみならずΑ-tubulin、HSP90、コルタクチンを脱アセチル化する。なかでもHDAC6の主要な基質はα-tubulinであり、α-tubulinのアセチル化レベルを制御することで[[微小管]]の安定性をコントロールし、その輸送等に重要な役割を果たすことが報告されている<ref name="ref34"><pubmed>12486003</pubmed></ref><ref><pubmed>20520769</pubmed></ref>。微小管のアセチル化が促進されると、神経細胞において微小管と[[キネシン]]-1との結合が促進され、[[JNK-interacting Protein 1]]やBDNFなどのキネシン-1の[[カーゴタンパク質]]の[[極性輸送]]が促進される<ref><pubmed>17084703</pubmed></ref>。HDAC6による微小管の安定性制御は神経細胞におけるキネシン-1によるミトコンドリアの輸送にも重要であり<ref name="ref34" /><ref><pubmed>16306220</pubmed></ref>、異常なミトコンドリア輸送は、アルツハイマー病、パーキンソン病、ハンチントン病、[[筋委縮性側索硬化症]]などの脳疾患に関係することが知られている<ref><pubmed>22750523</pubmed></ref>。また、HDAC6は[[軸索]]の末端領域に局在することで軸索の伸長にも重要な役割を果たしており、TSAなどのHDAC阻害剤によるtubulinの脱アセチル化阻害は軸索の伸長を阻害することが報告されている<ref><pubmed>20886111</pubmed></ref>。<br>  


 しかし逆に、HDAC6はマウスの情動行動に関与し、HDAC6の欠損やHDAC6阻害剤が運動亢進、不安の軽減などの抗うつ様の行動を誘導することで、うつ病等の治療によい影響を与えることも明らかになっている。HDAC6は、気分障害等の精神疾患に深く関与する[[セロトニン神経細胞]]の豊富な[[中脳]][[縫線核]]、[[青斑核]]、黒質の神経細胞に多く存在している。しかし、HDAC6の欠損マウスにおいて、セロトニンの量、及び既存の抗うつ薬である[[選択的セロトニン再取り込み阻害薬]]/[[セロトニン・ノルアドレナリン再取り込み阻害薬]](Selective Serotonin Reuptake Inhibitors/ Serotonin &amp; Norepinephrine Reuptake Inhibitors:SSRI/SNRI)に対する応答性には変化がなく、SSRI/SNRIの急性投与による大幅なうつ様行動の改善はHDAC6の欠損マウスと野生型マウスで同程度である。このことからHDAC6阻害剤による抗うつ作用メカニズムは既存の抗うつ薬とは異なると考えられており、HDAC6の阻害はうつ病の病態解明や新規抗うつ薬の開発につながる可能性が示唆されている<ref><pubmed>22328923</pubmed></ref>。  
 しかし逆に、HDAC6はマウスの[[情動]]行動に関与し、HDAC6の欠損やHDAC6阻害剤が運動亢進、[[不安]]の軽減などの抗うつ様の行動を誘導することで、[[うつ病]]等の治療によい影響を与えることも明らかになっている。HDAC6は、[[気分障害]]等の精神疾患に深く関与する[[セロトニン神経細胞]]の豊富な中脳の[[縫線核]]、[[青斑核]]、黒質の神経細胞に多く存在している。しかし、HDAC6の欠損マウスにおいて、セロトニンの量、及び既存の[[抗うつ薬]]である[[選択的セロトニン再取り込み阻害薬]]/[[セロトニン・ノルアドレナリン再取り込み阻害薬]](Selective Serotonin Reuptake Inhibitors/ Serotonin &amp; Norepinephrine Reuptake Inhibitors:SSRI/SNRI)に対する応答性には変化がなく、SSRI/SNRIの急性投与による大幅なうつ様行動の改善はHDAC6の欠損マウスと野生型マウスで同程度である。このことからHDAC6阻害剤による抗うつ作用メカニズムは既存の抗うつ薬とは異なると考えられており、HDAC6の阻害はうつ病の病態解明や新規抗うつ薬の開発につながる可能性が示唆されている<ref><pubmed>22328923</pubmed></ref>。  


 上記の例に加えて、タンパク質のアセチル化と脳機能に関しては多くの報告がなされている。これらのことから、ヒストンのアセチル化や非ヒストンタンパク質のアセチル化は脳の発達や機能にさまざまな役割を果たしており、脳において重要な機構であるといえる。  
 上記の例に加えて、タンパク質のアセチル化と脳機能に関しては多くの報告がなされている。これらのことから、ヒストンのアセチル化や非ヒストンタンパク質のアセチル化は脳の発達や機能にさまざまな役割を果たしており、脳において重要な機構であるといえる。  

案内メニュー