「視覚系の発生」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
53行目: 53行目:
[[Image:3 視覚系の発生.png|thumb|280px|<b>図3.眼杯と眼茎の横断面(ヒト胎生6-7週)</b><br />硝子体血管が眼杯裂から水晶体胞のほうへ侵入している。文献<ref name=ref6 />の図を改変。]]
[[Image:3 視覚系の発生.png|thumb|280px|<b>図3.眼杯と眼茎の横断面(ヒト胎生6-7週)</b><br />硝子体血管が眼杯裂から水晶体胞のほうへ侵入している。文献<ref name=ref6 />の図を改変。]]


 光を感じる網膜は脳の一部として発生し、前脳から外側へ突出した膨らみである[[眼胞]]に由来する(図1)。眼胞形成の兆候はヒトで胎生第3週の中頃にすでに認められ、[[神経板]]の予定[[前脳]]形成領域に[[眼溝]]と呼ばれる浅いくぼみができ、これが眼胞形成のもととなる。眼胞は、胎生第4週のはじめに、近傍の表皮外胚葉に作用して肥厚させ、[[wikipedia:ja:水晶体板|水晶体板]](lens placode)を誘導する。やがて、眼胞は腹側に切れ長に陥入をおこして眼杯となり、前脳との連絡部が細くなって中腔の[[眼茎]](がんけいoptic stalk)([[眼柄]]「がんぺい」ともいう<ref name="ref2">'''パッテン'''<br>発生学 第5版、白井敏雄監訳、<br>pp355-368、西村書店、新潟、1990年</ref>)が形成される(図2)。同時に水晶体板も陥入して、胎生第5週までに表皮外胚葉から分離して[[wikipedia:ja:水晶体胞|水晶体胞]]となる。眼杯の内層、外層の間には最初、[[網膜内腔]](intraretinal space; [[視室]] cavitas opticaともいう)と呼ばれる間隙が存在するが、まもなく消失する。眼杯外層は一層の[[網膜色素上皮]]に分化し、眼杯内層は偽重層上皮である神経網膜に分化する。眼杯外層の色素は、胎生第5週末頃から蓄積され始める。眼杯および眼茎の腹側部には[[眼杯裂]] (optic fissure; 脈絡膜裂 choroid fissureともいう)と呼ばれる線状の溝が形成され、ここに硝子体血管が発生する(図2、図3)。ヒト胎生第6-7週中に眼杯裂の縁が癒合すると(図2)、硝子体血管は眼茎内に包み込まれる。硝子体血管の遠位部は最終的に退行して硝子体管を残すだけになるが、近位部は[[wikipedia:ja:網膜中心動脈|網膜中心動脈]]および[[wikipedia:ja:網膜中心静脈|網膜中心静脈]]となる。
 光を感じる網膜は脳の一部として発生し、前脳から外側へ突出した膨らみである[[眼胞]]に由来する(図1)。眼胞形成の兆候はヒトで胎生第3週の中頃にすでに認められ、[[神経板]]の予定[[前脳]]形成領域に[[眼溝]]と呼ばれる浅いくぼみができ、これが眼胞形成のもととなる。眼胞は、胎生第4週のはじめに、近傍の表皮外胚葉に作用して肥厚させ、[[wikipedia:ja:水晶体板|水晶体板]](lens placode)を誘導する。やがて、眼胞は腹側に切れ長に陥入をおこして眼杯となり、前脳との連絡部が細くなって中腔の[[眼茎]](がんけいoptic stalk)([[眼柄]]「がんぺい」ともいう<ref name="ref2">'''パッテン'''<br>発生学 第5版、白井敏雄監訳、<br>pp355-368、西村書店、新潟、1990年</ref>)が形成される(図2)。同時に水晶体板も陥入して、胎生第5週までに表皮外胚葉から分離して[[wikipedia:ja:水晶体胞|水晶体胞]]となる。眼杯の内層、外層の間には最初、[[網膜内腔]](intraretinal space; [[視室]] cavitas opticaともいう)と呼ばれる間隙が存在するが、まもなく消失する。眼杯外層は一層の[[網膜色素上皮]]に分化し、眼杯内層は[[wikipedia:ja:偽重層上皮|偽重層上皮]]である神経網膜に分化する。眼杯外層の色素は、胎生第5週末頃から蓄積され始める。眼杯および眼茎の腹側部には[[眼杯裂]] (optic fissure; [[脈絡膜裂]] choroid fissureともいう)と呼ばれる線状の溝が形成され、ここに硝子体血管が発生する(図2、図3)。ヒト胎生第6-7週中に眼杯裂の縁が癒合すると(図2)、硝子体血管は眼茎内に包み込まれる。硝子体血管の遠位部は最終的に退行して硝子体管を残すだけになるが、近位部は[[wikipedia:ja:網膜中心動脈|網膜中心動脈]]および[[wikipedia:ja:網膜中心静脈|網膜中心静脈]]となる。


=== 網膜、虹彩、毛様体===
=== 網膜、虹彩、毛様体===
63行目: 63行目:
[[Image:5 視覚系の発生.png|thumb|280px|'''図5.虹彩毛様体部'''<br>文献<ref name=ref6 />の図を改変。RPE: 網膜色素上皮、CMZ: 毛様体辺縁部]]
[[Image:5 視覚系の発生.png|thumb|280px|'''図5.虹彩毛様体部'''<br>文献<ref name=ref6 />の図を改変。RPE: 網膜色素上皮、CMZ: 毛様体辺縁部]]


 眼杯内層すなわち神経網膜の後部5分の4を[[網膜視部]]と呼び、視室に接した領域から[[光受容細胞]]である[[桿体]]と[[錐体]]とが分化する。従って、光は光受容ニューロンに届く前に網膜のほとんどの層を通過するが、網膜は薄くて透明であるため、光に対して妨げとならない。より内側の神経網膜には、[[外顆粒層]]、[[内顆粒層]]、[[神経節細胞層]]が区別されるようになり(図4)、それぞれ桿体・錐体の核、[[介在ニューロン]]([[双極細胞]]など)の核、神経節細胞の核が存在する層を形成する。神経網膜の最も内側には神経節細胞の軸索が走行し、眼茎の内腔を通って視中枢へ投射する。網膜細胞の分化と増殖には部位による差があり、中心部網膜の細胞から分化成熟し、周辺部網膜には細胞増殖域がある。また、網膜細胞の中で神経節細胞が最初に分化する。ヒトの網膜には中心部に黄斑部と呼ばれる陥凹した部位があり、錐体視細胞が最も多く存在する。黄斑部は胎生第8月以降に発達し始め、生後6ヶ月頃に完成する<ref name="ref3">Ross組織学 原書第5版<br>内山安男・相磯貞和監訳<br>南江堂、東京、2010年</ref>。  
 眼杯内層すなわち神経網膜の後部5分の4を[[網膜視部]]と呼び、視室に接した領域から[[光受容細胞]]である[[桿体]]と[[錐体]]とが分化する。従って、光は光受容ニューロンに届く前に網膜のほとんどの層を通過するが、網膜は薄くて透明であるため、光に対して妨げとならない。より内側の神経網膜には、[[外顆粒層]]、[[内顆粒層]]、[[神経節細胞層]]が区別されるようになり(図4)、それぞれ桿体・錐体の[[wikipedia:ja:核|核]]、[[介在ニューロン]]([[双極細胞]]など)の核、神経節細胞の核が存在する層を形成する。神経網膜の最も内側には神経節細胞の軸索が走行し、眼茎の内腔を通って視中枢へ投射する。網膜細胞の分化と増殖には部位による差があり、中心部網膜の細胞から分化成熟し、周辺部網膜には細胞増殖域がある。また、網膜細胞の中で神経節細胞が最初に分化する。ヒトの網膜には中心部に黄斑部と呼ばれる陥凹した部位があり、錐体視細胞が最も多く存在する。黄斑部は胎生第8月以降に発達し始め、生後6ヶ月頃に完成する<ref name="ref3">Ross組織学 原書第5版<br>内山安男・相磯貞和監訳<br>南江堂、東京、2010年</ref>。  


 神経網膜の前部5分の1は[[網膜盲部]]と呼ばれ、[[網膜虹彩部]]と[[網膜毛様体部]]を形成する。虹彩は、平滑筋である[[wikipedia:ja:瞳孔筋|瞳孔筋]](瞳の開閉を司る[[wikipedia:ja:括約筋|括約筋]]と[[wikipedia:ja:散大筋|散大筋]])、結合組織、色素上皮、無色素上皮からなる(図5)。毛様体は、5ヶ月めの胎児になると、毛様体突起と呼ばれるヒダ状の部分が同定できるようになり、やがて毛様体筋(水晶体の曲率を調節する平滑筋)が発生し、[[wikipedia:ja:毛様体小帯|毛様体小帯]](水晶体を支える弾性線維、zunular fiber、[[wikipedia:ja:チン小帯|チン小帯]]ともいう)は毛様体突起から分泌されてできる<ref name="ref3" />。虹彩上皮および毛様体上皮(突起)の色素上皮、無色素上皮はそれぞれ眼杯外層、眼杯内層に由来する。瞳孔筋は眼杯(神経外胚葉)由来であるのに対し、毛様体筋は神経堤に由来する。瞳孔括約筋は[[動眼神経]]([[副交感神経]])、[[瞳孔散大筋]]は[[頚部交感神経]]に支配される。毛様体筋は動眼神経(副交感神経)に支配される。  
 神経網膜の前部5分の1は[[網膜盲部]]と呼ばれ、[[網膜虹彩部]]と[[網膜毛様体部]]を形成する。虹彩は、[[wikipedia:ja:平滑筋|平滑筋]]である[[wikipedia:ja:瞳孔筋|瞳孔筋]](瞳の開閉を司る[[wikipedia:ja:括約筋|括約筋]]と[[wikipedia:ja:散大筋|散大筋]])、結合組織、色素上皮、無色素上皮からなる(図5)。毛様体は、5ヶ月めの胎児になると、毛様体突起と呼ばれるヒダ状の部分が同定できるようになり、やがて毛様体筋(水晶体の曲率を調節する平滑筋)が発生し、[[wikipedia:ja:毛様体小帯|毛様体小帯]](水晶体を支える弾性線維、zunular fiber、[[wikipedia:ja:チン小帯|チン小帯]]ともいう)は毛様体突起から分泌されてできる<ref name="ref3" />。虹彩上皮および毛様体上皮(突起)の色素上皮、無色素上皮はそれぞれ眼杯外層、眼杯内層に由来する。瞳孔筋は眼杯(神経外胚葉)由来であるのに対し、毛様体筋は神経堤に由来する。瞳孔括約筋は[[動眼神経]]([[副交感神経]])、[[瞳孔散大筋]]は[[頚部交感神経]]に支配される。毛様体筋は動眼神経(副交感神経)に支配される。  


=== 水晶体===
=== 水晶体===
91行目: 91行目:
<ref name="ref1" />  
<ref name="ref1" />  


 眼周囲間葉は、眼杯裂より眼杯内部へ入り、硝子体血管とともに透明なゼラチン質からなる[[wikipedia:ja:硝子体|硝子体]]を形成する。前述のように、硝子体血管は後に退縮し硝子体管を痕跡として残す。  
 眼周囲間葉は、眼杯裂より眼杯内部へ入り、硝子体血管とともに透明な[[wikipedia:ja:ゼラチン|ゼラチン]]質からなる[[wikipedia:ja:硝子体|硝子体]]を形成する。前述のように、硝子体血管は後に退縮し硝子体管を痕跡として残す。  


=== 視神経===
=== 視神経===
111行目: 111行目:
=== 外眼筋===
=== 外眼筋===


 6つの外眼筋が、[[wikipedia:ja:眼窩骨|眼窩骨]]の結合組織から始まり強膜に付着し、眼球の運動を司り両眼融合視を可能にしている。[[wikipedia:ja:外直筋|外直筋]]と[[wikipedia:ja:上斜筋|上斜筋]]は、頭部の分節していない傍軸中胚葉に由来し、それぞれ[[外転神経]]と[[滑車神経]]支配である。[[wikipedia:ja:上直筋|上直筋]]、[[wikipedia:ja:下直筋|下直筋]]、[[wikipedia:ja:内直筋|内直筋]]および[[wikipedia:ja:下斜筋|下斜筋]]は、[[wikipedia:ja:脊索|脊索]]前方の頭部中胚葉に由来し、すべて動眼神経支配である<ref name="ref5"><pubmed>21482859</pubmed></ref>。
 6つの[[wikipedia:ja:外眼筋|外眼筋]]が、[[wikipedia:ja:眼窩骨|眼窩骨]]の結合組織から始まり強膜に付着し、眼球の運動を司り両眼融合視を可能にしている。[[wikipedia:ja:外直筋|外直筋]]と[[wikipedia:ja:上斜筋|上斜筋]]は、頭部の分節していない[[wikipedia:ja:傍軸中胚葉|傍軸中胚葉]]に由来し、それぞれ[[外転神経]]と[[滑車神経]]支配である。[[wikipedia:ja:上直筋|上直筋]]、[[wikipedia:ja:下直筋|下直筋]]、[[wikipedia:ja:内直筋|内直筋]]および[[wikipedia:ja:下斜筋|下斜筋]]は、[[wikipedia:ja:脊索|脊索]]前方の[[wikipedia:ja:頭部中胚葉|頭部中胚葉]]に由来し、すべて動眼神経支配である<ref name="ref5"><pubmed>21482859</pubmed></ref>。


== 眼の形成の分子的制御  ==
== 眼の形成の分子的制御  ==
119行目: 119行目:
<ref name="ref1" />  
<ref name="ref1" />  


 眼が形成されるのに必須の遺伝子は、[[マウス]]、[[wikipedia:ja:ヒト|ヒト]]、[[ショウジョウバエ]]の遺伝学から発見された。1960年代にSmall eye (Sey)という常染色体半優性遺伝の突然変異マウスが見つかっていた。このマウスは、ヘテロ接合変異体で小眼症を呈し、ホモ接合変異体では全く眼が形成されない。また、ヒト先天性眼疾患の一つである[[wikipedia:ja:無虹彩症|無虹彩症]] aniridiaの原因遺伝子(An)が同定され、ヒトの[[Pax6]]遺伝子であることが明らかになった(1991年)。これとほぼ同時期に、マウスSeyの原因遺伝子もPax6遺伝子であることが報告された。1993年には、小眼症ラット「内田ラット」(rSey) の原因遺伝子がPax6遺伝子であること、この変異体解析からPax6遺伝子は眼の発生だけでなく、神経堤細胞の移動による頭部・顔面発生に関与していることが世界で初めて報告された。その後、ショウジョウバエのeyeless変異体の原因遺伝子がハエのPax6相同遺伝子であることが発見された。ショウジョウバエでeyelessあるいはマウスPax6遺伝子を異所性に発現させると、[[wikipedia:ja:触角|触角]]や[[wikipedia:ja:脚|脚]]、[[wikipedia:ja:翅|翅]]に複眼を形成させることができる。Pax6遺伝子は眼の原基以外にも、[[wikipedia:ja:鼻板|鼻板]]や脳の他の領域、神経管、分化した網膜細胞、[[wikipedia:ja:膵臓|膵臓]]などにも発現しており、多くの機能を担っている。また、無虹彩症以外にも様々な先天性眼疾患でPax6遺伝子の変異が見られる。  
 眼が形成されるのに必須の遺伝子は、[[マウス]]、[[wikipedia:ja:ヒト|ヒト]]、[[ショウジョウバエ]]の遺伝学から発見された。1960年代にSmall eye (Sey)という常染色体半優性遺伝の突然変異マウスが見つかっていた。このマウスは、ヘテロ接合変異体で[[wikipedia:ja:小眼症|小眼症]]を呈し、ホモ接合変異体では全く眼が形成されない。また、ヒト先天性眼疾患の一つである[[wikipedia:ja:無虹彩症|無虹彩症]] aniridiaの原因遺伝子(An)が同定され、ヒトの[[Pax6]]遺伝子であることが明らかになった(1991年)。これとほぼ同時期に、マウスSeyの原因遺伝子もPax6遺伝子であることが報告された。1993年には、小眼症ラット「内田ラット」(rSey) の原因遺伝子がPax6遺伝子であること、この変異体解析からPax6遺伝子は眼の発生だけでなく、神経堤細胞の移動による頭部・顔面発生に関与していることが世界で初めて報告された。その後、ショウジョウバエのeyeless変異体の原因遺伝子がハエのPax6相同遺伝子であることが発見された。ショウジョウバエでeyelessあるいはマウスPax6遺伝子を異所性に発現させると、[[wikipedia:ja:触角|触角]]や[[wikipedia:ja:脚|脚]]、[[wikipedia:ja:翅|翅]]に複眼を形成させることができる。Pax6遺伝子は眼の原基以外にも、[[wikipedia:ja:鼻板|鼻板]]や脳の他の領域、神経管、分化した網膜細胞、[[wikipedia:ja:膵臓|膵臓]]などにも発現しており、多くの機能を担っている。また、無虹彩症以外にも様々な先天性眼疾患でPax6遺伝子の変異が見られる。  


=== 眼が左右2つできるしくみ  ===
=== 眼が左右2つできるしくみ  ===
127行目: 127行目:
[[Image:8 視覚系の発生.png|thumb|280px|<b>図8.眼形成領域は発生初期には前方神経板の正中部にあり(A)、脊索前板からのShhの作用により左右2つに分かれる (B)</b><br />ヒト胎生3週の頭部神経板を上から見たところ。文献<ref name=ref6 />の図を改変。<br> EFTFs: Eye Field Transcription Factors ]]
[[Image:8 視覚系の発生.png|thumb|280px|<b>図8.眼形成領域は発生初期には前方神経板の正中部にあり(A)、脊索前板からのShhの作用により左右2つに分かれる (B)</b><br />ヒト胎生3週の頭部神経板を上から見たところ。文献<ref name=ref6 />の図を改変。<br> EFTFs: Eye Field Transcription Factors ]]


 これまでに眼形成領域に遺伝子発現する転写因子がPax6を含めていくつか同定されている(表2)<ref name="ref7">Retinal Development. <br>Edited by Sernagor E, Eglen S, Harris B, Wong R.<br>Cambridge University Press, Cambridge UK, 2006</ref>。発生初期において、これらの[[眼形成転写因子]]([[Eye Field Transcription Factors]], [[EFTFs]])は、神経管形成が始まる前の前方神経板に正中部から左右に帯状に遺伝子発現する(図8)。このように眼形成領域は、発生初期には中央部に一つで、発生が進むに従い左右2つの眼原基に分かれる。眼原基を2つに分けるためのシグナル分子は、[[脊索前板]]から分泌される[[ソニックヘッジホッグ]] ([[Sonic hedgehog]], [[Shh]])である。Shhは、眼形成領域の中央部でPax2の発現を増加させ、Pax6の発現を低下させる。[[Pax2]]発現領域は後に眼茎となり、Pax6などEFTFs発現領域は眼杯となる。Pax6は表皮外胚葉の予定水晶体・角膜領域にも発現するが[[Rax]]は眼胞とその系譜にのみに発現するなど、EFTFsの発現領域は互いに必ずしも全て一致するわけではない。Shh遺伝子変異やShhシグナル伝達阻害により[[wikipedia:ja:単眼症|単眼症]]がおこることからも、正中部からのShhシグナルが単一の眼形成領域を左右2つに分けることがわかる。  
 これまでに眼形成領域に遺伝子発現する[[転写因子]]がPax6を含めていくつか同定されている(表2)<ref name="ref7">Retinal Development. <br>Edited by Sernagor E, Eglen S, Harris B, Wong R.<br>Cambridge University Press, Cambridge UK, 2006</ref>。発生初期において、これらの[[眼形成転写因子]]([[Eye Field Transcription Factors]], [[EFTFs]])は、神経管形成が始まる前の前方神経板に正中部から左右に帯状に遺伝子発現する(図8)。このように眼形成領域は、発生初期には中央部に一つで、発生が進むに従い左右2つの眼原基に分かれる。眼原基を2つに分けるためのシグナル分子は、[[脊索前板]]から分泌される[[ソニックヘッジホッグ]] ([[Sonic hedgehog]], [[Shh]])である。Shhは、眼形成領域の中央部でPax2の発現を増加させ、Pax6の発現を低下させる。[[Pax2]]発現領域は後に眼茎となり、Pax6などEFTFs発現領域は眼杯となる。Pax6は表皮外胚葉の予定水晶体・角膜領域にも発現するが[[Rax]]は眼胞とその系譜にのみに発現するなど、EFTFsの発現領域は互いに必ずしも全て一致するわけではない。Shh遺伝子変異やShhシグナル伝達阻害により[[wikipedia:ja:単眼症|単眼症]]がおこることからも、正中部からのShhシグナルが単一の眼形成領域を左右2つに分けることがわかる。  


{|cellspacing="1" cellpadding="1" border="1"
{|cellspacing="1" cellpadding="1" border="1"
140行目: 140行目:
| [[Eye T-box]]  
| [[Eye T-box]]  
| [[T-box]]  
| [[T-box]]  
| 胎生致死、四肢・乳腺・卵黄嚢の異常
| 胎生致死、四肢・[[wikipedia:ja:乳腺|乳腺]]・[[wikipedia:ja:卵黄嚢|卵黄嚢]]の異常
|-
|-
| [[Rx1]] ([[Rax]])  
| [[Rx1]] ([[Rax]])  
| [[Retina homeobox-1]]  
| [[Retina homeobox-1]]  
| [[Paired-like homeobox]]  
| [[Paired-like homeobox]]  
| 新生児致死、前脳・中脳・眼の欠損
| 新生児致死、[[前脳]]・[[中脳]]・眼の欠損
|-
|-
| [[Pax6]]  
| [[Pax6]]  
160行目: 160行目:
| [[LIM homeobox-2]]  
| [[LIM homeobox-2]]  
| [[LIM homeobox|LIM (Lin11, Isl-1, Mec-3) homeobox]]  
| [[LIM homeobox|LIM (Lin11, Isl-1, Mec-3) homeobox]]  
| 周産期致死、肝臓・終脳・嗅脳・大脳基底核・眼形態の異常
| 周産期致死、[[wikipedia:ja:肝臓|肝臓]]・[[終脳]]・[[嗅脳]]・大脳基底核・眼形態の異常
|-
|-
| [[tll]] ([[Tlx]])([[Nr2e1]])  
| [[tll]] ([[Tlx]])([[Nr2e1]])  
| [[Tailless]]  
| [[Tailless]]  
| [[Nuclear receptor-type]]  
| [[Nuclear receptor-type]]  
| 小さい脳、大脳・嗅脳の形成不全、薄い網膜、網膜血管の減少
| 小さい脳、[[大脳]]・[[嗅脳]]の形成不全、薄い網膜、網膜血管の減少
|-
|-
| [[Optx2]] ([[Six6]])  
| [[Optx2]] ([[Six6]])  
| [[Optic Six gene 2]]  
| [[Optic Six gene 2]]  
| [[Six family of homeobox]]  
| [[Six family of homeobox]]  
| 網膜と下垂体の形成不全
| 網膜と[[下垂体]]の形成不全
|}
|}
* [http://www.informatics.jax.org/|Mouse Genome Informatics]を参照した。  
* [http://www.informatics.jax.org/|Mouse Genome Informatics]を参照した。  
180行目: 180行目:
[[Image:9 視覚系の発生.png|thumb|280px|<b>図9.眼杯のパターン形成と水晶体胞に分化に関わる分子の存在部位</b><br />A, 初期眼胞期; B, 後期眼胞期;C, 眼杯期。文献<ref name=ref6 />の図を改変。]]
[[Image:9 視覚系の発生.png|thumb|280px|<b>図9.眼杯のパターン形成と水晶体胞に分化に関わる分子の存在部位</b><br />A, 初期眼胞期; B, 後期眼胞期;C, 眼杯期。文献<ref name=ref6 />の図を改変。]]


 眼胞から眼杯が形成されるときに、将来、光を受容して情報処理を行う神経網膜領域と網膜色素上皮(Retinal Pigment Epithelium: RPE)の領域が決まってくる。これには、細胞非自律的な組織間相互作用によるしくみと細胞自律的なしくみの2つが関わっている。眼胞に隣接した表皮外胚葉からの[[線維芽細胞増殖因子]](Fibroblast Growth Factor: FGF)が、神経網膜の分化を促し、眼周囲間葉から分泌される[[形質転換増殖因子β]][[(Transforming Growth Factor β]]:[[TGFβ]])ファミリー分子がRPEの分化を促す(図9)。これら分泌因子の作用を受けて、予定神経網膜領域にはChx10 ([[Vsx2]]と同じ)などの[[転写因子]]が遺伝子発現するようになり、一方、予定RPE領域には[[Mitf]]などが発現するようになり、それぞれの分化が細胞自律的なしくみで進行する。[[Chx10]]はocular retardation (or) 変異マウスの原因遺伝子であり、Mitfはmicrophthalmia (mi) 変異マウスの原因遺伝子である。最近、マウスの[[胚性幹細胞]]([[ES細胞]])由来の上皮シートから三次元培養により眼杯が形成された<ref name="ref8"><pubmed>21475194</pubmed></ref>。培養皿で形成された眼杯において、神経網膜とRPEとが分化することが示された。このことは、眼杯のパターン形成と網膜細胞の分化が周囲の組織の介在なしに自律的に進行することを示している。  
 眼胞から眼杯が形成されるときに、将来、光を受容して情報処理を行う神経網膜領域と網膜色素上皮(Retinal Pigment Epithelium: RPE)の領域が決まってくる。これには、細胞非自律的な組織間相互作用によるしくみと細胞自律的なしくみの2つが関わっている。眼胞に隣接した表皮外胚葉からの[[線維芽細胞増殖因子]]([[Fibroblast Growth Factor]]: [[FGF]])が、神経網膜の分化を促し、眼周囲間葉から分泌される[[形質転換増殖因子β]]([[Transforming Growth Factor β]]:[[TGFβ]])ファミリー分子がRPEの分化を促す(図9)。これら分泌因子の作用を受けて、予定神経網膜領域にはChx10 ([[Vsx2]]と同じ)などの転写因子が遺伝子発現するようになり、一方、予定RPE領域には[[Mitf]]などが発現するようになり、それぞれの分化が細胞自律的なしくみで進行する。[[Chx10]]はocular retardation (or) 変異マウスの原因遺伝子であり、Mitfはmicrophthalmia (mi) 変異マウスの原因遺伝子である。最近、マウスの[[胚性幹細胞]]([[ES細胞]])由来の上皮シートから三次元培養により眼杯が形成された<ref name="ref8"><pubmed>21475194</pubmed></ref>。培養皿で形成された眼杯において、神経網膜とRPEとが分化することが示された。このことは、眼杯のパターン形成と網膜細胞の分化が周囲の組織の介在なしに自律的に進行することを示している。  


=== 水晶体の分化 ===
=== 水晶体の分化 ===
186行目: 186行目:
<ref name="ref6" />  
<ref name="ref6" />  


 水晶体板の形成にはPax6が必要であり、Pax6を発現している頭部表皮外胚葉は、眼胞からの水晶体誘導シグナルに応答できるようになる。Pax6は、転写因子Sox2の水晶体原基での遺伝子発現を促進し、水晶体分化を正に制御する(図9)。眼胞から分泌される[[骨形成因子4]] ([[Bone Morphogenic Factor 4]], [[BMP4]])も、Sox2および別の転写因子である[[L-maf]]の発現を上昇させ維持する。さらにPax6により[[ホメオボックス遺伝子]]である[[Six3]]と[[Prox1]]の発現が制御される。Pax6, Sox2, L-mafの協調的な作用により[[Prox1]]の発現が開始され、Prox1は水晶体特異的タンパク質であるクリスタリン遺伝子の発現を促して、水晶体分化を進める。一方、Six3は[[クリスタリン]]遺伝子の発現を負に制御する。
 水晶体板の形成にはPax6が必要であり、Pax6を発現している頭部表皮外胚葉は、眼胞からの水晶体誘導シグナルに応答できるようになる。Pax6は、転写因子[[Sox2]]の水晶体原基での遺伝子発現を促進し、水晶体分化を正に制御する(図9)。眼胞から分泌される[[骨形成因子4]] ([[Bone Morphogenic Factor 4]], [[BMP4]])も、Sox2および別の転写因子である[[L-maf]]の発現を上昇させ維持する。さらにPax6により[[ホメオボックス遺伝子]]である[[Six3]]と[[Prox1]]の発現が制御される。Pax6, Sox2, L-mafの協調的な作用により[[Prox1]]の発現が開始され、Prox1は水晶体特異的タンパク質であるクリスタリン遺伝子の発現を促して、水晶体分化を進める。一方、Six3は[[クリスタリン]]遺伝子の発現を負に制御する。


=== 網膜細胞分化 ===
=== 網膜細胞分化 ===
194行目: 194行目:
[[Image:10 視覚系の発生.png|thumb|280px|<b>図10.網膜細胞の分化に関わる様々な転写因子</b><br />マウス網膜では最初に神経節細胞が形成され(胎生11日から)、最後にミューラーグリア細胞が形成される(胎生16日から)。文献<ref name=ref9 />の図を改変。]]
[[Image:10 視覚系の発生.png|thumb|280px|<b>図10.網膜細胞の分化に関わる様々な転写因子</b><br />マウス網膜では最初に神経節細胞が形成され(胎生11日から)、最後にミューラーグリア細胞が形成される(胎生16日から)。文献<ref name=ref9 />の図を改変。]]


 神経網膜から様々な形態と機能をもった網膜細胞が分化するしくみの解明は、1980年代後半の網膜細胞系譜に関する研究にさかのぼる。すなわち、神経網膜の細胞である網膜前駆細胞retinal progenitor cells (RPCs)は、多分化能をもっており(multipotent)、全ての網膜細胞がRPCsから分化することが、[[wikipedia:ja:レトロウイルス|レトロウイルス]]や[[wikipedia:ja:蛍光|蛍光]]物質を用いた細胞標識法により明らかにされた。網膜細胞分化には、細胞外からの因子(extrinsic factors)と細胞内の自律的なしくみ(intrinsic factors)の両方が重要であることは、他の細胞や組織の発生分化と同様である。網膜細胞分化を左右する細胞自律的なしくみとして、様々な転写調節因子が同定されている(図10)。[[BHLH因子|塩基性ヘリックスループヘリックス]] ([[basic-helix-loop-helix]], [[bHLH]])、[[ホメオドメイン]] ([[homeodomain]])、[[フォークヘッド]] ([[forkhead]])などのモチーフをもつものが多い。
 神経網膜から様々な形態と機能をもった網膜細胞が分化するしくみの解明は、1980年代後半の網膜細胞系譜に関する研究にさかのぼる。すなわち、神経網膜の細胞である[[網膜前駆細胞]][[retinal progenitor cells]] ([[RPCs]])は、[[wikipedia:ja:多分化能|多分化能]]をもっており(multipotent)、全ての網膜細胞がRPCsから分化することが、[[wikipedia:ja:レトロウイルス|レトロウイルス]]や[[wikipedia:ja:蛍光|蛍光]]物質を用いた細胞標識法により明らかにされた。網膜細胞分化には、細胞外からの因子(extrinsic factors)と細胞内の自律的なしくみ(intrinsic factors)の両方が重要であることは、他の細胞や組織の発生分化と同様である。網膜細胞分化を左右する細胞自律的なしくみとして、様々な転写調節因子が同定されている(図10)。[[BHLH因子|塩基性ヘリックスループヘリックス]] ([[basic-helix-loop-helix]], [[bHLH]])、[[ホメオドメイン]] ([[homeodomain]])、[[フォークヘッド]] ([[forkhead]])などのモチーフをもつものが多い。


== 網膜幹細胞・網膜前駆細胞  ==
== 網膜幹細胞・網膜前駆細胞  ==
211行目: 211行目:
|-
|-
| Pax6  
| Pax6  
| アマクリン細胞、網膜神経節細胞
| [[アマクリン細胞]]、網膜神経節細胞
|-
|-
| Sox2  
| Sox2  
| [[ミュラーグリア細胞]]、網膜[[アストロサイト]]
| [[ミュラーグリア細胞]]、網膜[[アストロサイト]]
|-
|-
| nestin  
| [[nestin]]
| グリア細胞、創傷時、内皮細胞、[[周皮細胞]]、[[wikipedia:ja:腫瘍|腫瘍]]細胞
| [[グリア細胞]]、創傷時、内皮細胞、[[周皮細胞]]、[[wikipedia:ja:腫瘍|腫瘍]]細胞
|-
|-
| vimentin  
| [[vimentin]]
| グリア細胞、創傷時
| グリア細胞、創傷時
|-
|-
| musashi  
| [[musashi]]
| 神経幹細胞
| 神経幹細胞
|-
|-
229行目: 229行目:
|}
|}


<br>  網膜細胞形成retinogenesisは、[[魚類]]や[[両生類]]において生涯にわたっておこり、その細胞の供給は[[毛様体辺縁部]](ciliary marginal zone: CMZ)(図5)と呼ばれる周辺部網膜からなされる。魚類では、中心部網膜の[[Mullerグリア系]]の細胞から[[桿体]][[視細胞]]が付加的に形成されることから、Muller(ミューラー)グリア細胞も動物や環境によって網膜前駆細胞に変化すると考えられている。鳥類もCMZ類似の増殖性周辺部網膜をもつが、孵化後2-3週間までに細胞分裂しなくなり、分化する網膜神経細胞の種類も限られている。マウスのCMZ様領域の細胞は、グリア細胞または後期分化型網膜細胞(双極細胞、桿体)にのみ分化し、生後1週間までにこの能力は失われ、生後2週間までに網膜細胞形成が見られなくなる。2000年に、成体[[wikipedia:ja:齧歯類|齧歯類]]の分化した[[毛様体]][[色素上皮]]が、培養下で高い増殖能力を持って網膜前駆細胞様に脱分化して、様々な網膜神経細胞に分化できることが報告された。その後研究が進み、毛様体以外にも様々な眼の細胞が、[[増殖因子]]添加や創傷時など、いろいろな条件下で脱分化して網膜神経細胞へと分化できることがわかった(表4)<ref name="ref10" />。  
<br>  網膜細胞形成retinogenesisは、[[魚類]]や[[両生類]]において生涯にわたっておこり、その細胞の供給は[[毛様体辺縁部]](ciliary marginal zone: CMZ)(図5)と呼ばれる周辺部網膜からなされる。魚類では、中心部網膜の[[Müllerグリア]]系の細胞から[[桿体]][[視細胞]]が付加的に形成されることから、Müller(ミューラー)グリア細胞も動物や環境によって網膜前駆細胞に変化すると考えられている。鳥類もCMZ類似の増殖性周辺部網膜をもつが、孵化後2-3週間までに細胞分裂しなくなり、分化する網膜神経細胞の種類も限られている。マウスのCMZ様領域の細胞は、グリア細胞または後期分化型網膜細胞([[双極細胞]]、桿体)にのみ分化し、生後1週間までにこの能力は失われ、生後2週間までに網膜細胞形成が見られなくなる。2000年に、成体[[wikipedia:ja:齧歯類|齧歯類]]の分化した[[毛様体]][[色素上皮]]が、培養下で高い増殖能力を持って網膜前駆細胞様に脱分化して、様々な網膜神経細胞に分化できることが報告された。その後研究が進み、毛様体以外にも様々な眼の細胞が、[[増殖因子]]添加や創傷時など、いろいろな条件下で脱分化して網膜神経細胞へと分化できることがわかった(表4)<ref name="ref10" />。  


<br>  
<br>  
283行目: 283行目:
|  
|  
|-
|-
| Mullerグリア細胞
| Müllerグリア細胞
| style="text-align:center" | ○  
| style="text-align:center" | ○  
| style="text-align:center" | ○  
| style="text-align:center" | ○  

案内メニュー