「有髄線維」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
8行目: 8行目:
 末梢神経の神経線維は髄鞘の有無、直径、伝導速度等で分類される。有髄線維と無髄線維では有髄線維が、同じ種類の線維間では直径の大きい方が伝導速度が速い。前者は跳躍伝導により、後者の[[電気緊張電位]]の広がりを利用した伝導よりも速い伝導速度を得ている。一般に[[wikipedia:ja:骨格筋|骨格筋]]運動と付随する[[固有感覚]]、部位のはっきりした[[皮膚感覚]]は伝導速度の速い線維を、[[交感神経]]活動や[[鈍痛]]などは伝導速度の遅い線維を利用して伝えられる。
 末梢神経の神経線維は髄鞘の有無、直径、伝導速度等で分類される。有髄線維と無髄線維では有髄線維が、同じ種類の線維間では直径の大きい方が伝導速度が速い。前者は跳躍伝導により、後者の[[電気緊張電位]]の広がりを利用した伝導よりも速い伝導速度を得ている。一般に[[wikipedia:ja:骨格筋|骨格筋]]運動と付随する[[固有感覚]]、部位のはっきりした[[皮膚感覚]]は伝導速度の速い線維を、[[交感神経]]活動や[[鈍痛]]などは伝導速度の遅い線維を利用して伝えられる。


[[ファイル:伝導速度.png|400px|thumb|right|表1.神経線維の分類<ref>Principles of neural science fifth edition 475-480 Eric R. Kandel et al.</ref>]]
[[ファイル:伝導速度.png|400px|thumb|right|表1.神経線維の分類<ref name=ref1>'''Eric R. Kandel et al.'''<br>Principles of neural science fifth edition 475-480</ref>]]
[[ファイル:分類改.png|400px|thumb|right|表2.神経線維の受容器の分類とその様式<ref>Principles of neural science fifth edition 475-480 Eric R. Kandel et al.</ref>]]
[[ファイル:分類改.png|400px|thumb|right|表2.神経線維の受容器の分類とその様式<ref name=ref1 />]]




24行目: 24行目:
[[Image:跳躍伝導(有髄).png|thumb|350px|'''図3.跳躍伝導'''<br>髄鞘が絶縁体の役割を果たし、活動電位の伝達が早くなる。]]  
[[Image:跳躍伝導(有髄).png|thumb|350px|'''図3.跳躍伝導'''<br>髄鞘が絶縁体の役割を果たし、活動電位の伝達が早くなる。]]  


それぞれのイオンが受動的に流失し、電気化学的平衡が失われた場合、それを補償する能動的輸送が必要となる。この能動的輸送にはエネルギーが必要とされる。一般的には一次と二次能動輸送という二種類の重要な能動輸送がある(図2)。
それぞれのイオンが受動的に流失し、電気化学的平衡が失われた場合、それを補償する能動的輸送が必要となる。この能動的輸送にはエネルギーが必要とされる。一般的には一次と二次能動輸送という二種類の重要な能動輸送がある(図2)。
神経軸索の起始部で髄鞘に覆われていない部分は[[初節]](axon initial segment; AISと略される)とよばれ、電位依存性ナトリウムチャネルが高密度に集積しており、通常[[活動電位]]が最初に発火する<ref><pubmed>20631711</pubmed></ref>。AISで発現するチャネルは発達に伴い、あるいは病態時にその発現や分布が変化する<ref><pubmed>22103418</pubmed></ref>。AIS以降の軸索では、ほぼ等間隔にランヴィエ絞輪が現れる。AISやランヴィエ絞輪で発生した活動電位は、受動的伝播(電気緊張電位)によって次のランヴィエ絞輪に伝わる。髄鞘の絶縁性が高いために電位変化の減衰度合いは小さく押さえられる。そのため無髄軸索よりも離れた距離でも臨界脱分極を越える。またランヴィエ絞輪では電位依存性ナトリウムチャネルが集積しているため、活動電位が発生しやすい。この2つの効果によって跳躍伝導(saltatory conduction)が起こる。跳躍伝導は、活動電位の伝導速度を速く保つとともに、活動電位発生がランヴィエ絞輪に限局されるために、代謝エネルギーの節約にもなる。
神経軸索の起始部で髄鞘に覆われていない部分は[[初節]](axon initial segment; AISと略される)とよばれ、電位依存性ナトリウムチャネルが高密度に集積しており、通常[[活動電位]]が最初に発火する<ref><pubmed>20631711</pubmed></ref>。AISで発現するチャネルは発達に伴い、あるいは病態時にその発現や分布が変化する<ref><pubmed>22103418</pubmed></ref>。AIS以降の軸索では、ほぼ等間隔にランヴィエ絞輪が現れる。AISやランヴィエ絞輪で発生した活動電位は、受動的伝播(電気緊張電位)によって次のランヴィエ絞輪に伝わる。髄鞘の絶縁性が高いために電位変化の減衰度合いは小さく押さえられる。そのため無髄軸索よりも離れた距離でも臨界脱分極を越える。またランヴィエ絞輪では電位依存性ナトリウムチャネルが集積しているため、活動電位が発生しやすい。この2つの効果によって跳躍伝導(saltatory conduction)が起こる。跳躍伝導は、活動電位の伝導速度を速く保つとともに、活動電位発生がランヴィエ絞輪に限局されるために、代謝エネルギーの節約にもなる。


70行目: 70行目:
|}
|}


'''表2 代表的な脱髄性疾患'''
'''表3.代表的な脱髄性疾患'''


大きく分けて中枢神経系と末梢神経系の疾患がある。(編集部コメント:箇条書きになっていたものを編集部で表に致しました。御確認下さい。病因によって分類出来ないでしょうか。)
大きく分けて中枢神経系と末梢神経系の疾患がある。(編集部コメント:箇条書きになっていたものを編集部で表に致しました。御確認下さい。病因によって分類出来ないでしょうか。)

案内メニュー