「上衣細胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
==1. 上衣細胞の発生==<br>発生期を通じて、ニューロンを含む脳の様々な細胞は、脳室に面した神経幹細胞から産生されており、上衣細胞も同様にこの胎生期神経幹細胞(放射状グリア)から産生される。胎生期に脳室面を構成する細胞は、発生が進行するにつれて神経上皮細胞から放射状グリアへと変化し、生後に上衣細胞及びアストロサイト(神経幹細胞)へと分化する。マウスでは生後2-3日より脳室壁に上衣細胞が発生し、生後10日から運動性繊毛を持つ上衣細胞で覆われ始める。生後に観察される放射状グリアから上衣細胞への分化は、多数の運動性繊毛の形成から細胞内及び細胞間での平面細胞極性形成というダイナミックな過程を経る(図2)。  
==1. 上衣細胞の発生==<br>発生期を通じて、ニューロンを含む脳の様々な細胞は、脳室に面した神経幹細胞から産生されており、上衣細胞も同様にこの胎生期神経幹細胞(放射状グリア)から産生される。胎生期に脳室面を構成する細胞は、発生が進行するにつれて神経上皮細胞から放射状グリアへと変化し、生後に上衣細胞及びアストロサイト(神経幹細胞)へと分化する。マウスでは生後2-3日より脳室壁に上衣細胞が発生し、生後10日から運動性繊毛を持つ上衣細胞で覆われ始める。生後に観察される放射状グリアから上衣細胞への分化は、多数の運動性繊毛の形成から細胞内及び細胞間での平面細胞極性形成というダイナミックな過程を経る(図2)。  


===1-1. 上衣細胞の発生過程===<br> 脳室及び脊髄中心管を覆う上衣細胞は同時に発生するのではなく、脳室内は尾側-吻側方向に、中心管内は、吻側-尾側方向に発生が進行する<ref><pubmed> 6741688</pubmed></ref><ref><pubmed> 9550133</pubmed></ref>。マウスにおいては、第3脳室の上衣細胞は胎生11-13日<ref><pubmed> 5659133</pubmed></ref>、側脳室の上衣細胞は胎生14-16日<ref><pubmed> 15634762</pubmed></ref>の間に最終分裂を行う。ラット脊髄における上衣細胞は、胎生18日と生後8-15日に最終分裂のピークが見られる<ref><pubmed> 20079525</pubmed></ref><ref><pubmed> 7275786</pubmed></ref>。ヒトでは、正確な時期は不明であるが、妊娠25週から神経管に沿って上衣細胞が出現する<ref><pubmed> 1371311</pubmed></ref>。上衣細胞の発生開始の時期は領域によって異なるが、げっ歯類においてはどの領域でも最終分裂から繊毛の出現までは1週間程度の時間がかかる。上衣細胞の前駆細胞にあたる放射状グリアは、脳室に面した頂端表面から1本の一次繊毛を伸ばしており、上衣細胞へと分化する際には一次繊毛が存在した頂端表面内の領域に運動性繊毛が形成される<ref><pubmed> 20164345</pubmed></ref>。その後、細胞質に、deuterosome(基底小体前駆体)と呼ばれる繊毛の基底小体の形成中心としてはたらく球状の構造体が多数出現する<ref><pubmed> 5111878</pubmed></ref>。未熟な基底小体がdeuterosomeから脳室側の細胞膜へと移動して結合した後、繊毛の伸長が始まる。繊毛の伸長と共に繊毛運動が始まるが、これと同時にdeuterosomeが消失し、基底小体は脳脊髄液流の方向に配向する。上衣細胞内での繊毛運動の配向が揃い、基底小体及び繊毛が細胞前方へと移動した後、上衣細胞間における協調した繊毛運動が観察される<ref><pubmed> 20305650</pubmed></ref>(図2)。<br> 放射状グリアは、上記のように上衣細胞に分化する細胞群に加えて、アストロサイトに分化する細胞群も存在する。特に、脳室下帯では、脳室面に一次繊毛を伸長するアストロサイトが成体神経幹細胞としてはたらく<ref><pubmed> 19153578</pubmed></ref>(図1D)。成体脳側脳室の脳室壁では、神経幹細胞の周囲を上衣細胞が風車状に取り囲んでいる様子とそのような構造の形成機構が近年報告された<ref><pubmed> 22862947</pubmed></ref><ref><pubmed> 18786414</pubmed></ref>。このユニークな形態学的特徴の意味は現在のところ不明であるが、放射状グリアから上衣細胞及び神経幹細胞への分化メカニズムを把握する上で、この構造の詳細を理解することが重要と考えられている。  
===1-1. 上衣細胞の発生過程===<br> 脳室及び脊髄中心管を覆う上衣細胞は同時に発生するのではなく、脳室内は尾側-吻側方向に、中心管内は、吻側-尾側方向に発生が進行する<ref><pubmed> 6741688</pubmed></ref><ref><pubmed> 9550133</pubmed></ref>。マウスにおいては、第3脳室の上衣細胞は胎生11-13日<ref><pubmed> 5659133</pubmed></ref>、側脳室の上衣細胞は胎生14-16日<ref><pubmed> 15634762</pubmed></ref>の間に最終分裂を行う。ラット脊髄における上衣細胞は、胎生18日と生後8-15日に最終分裂のピークが見られる<ref><pubmed> 20079525</pubmed></ref><ref><pubmed> 7275786</pubmed></ref>。ヒトでは、正確な時期は不明であるが、妊娠25週から神経管に沿って上衣細胞が出現する<ref><pubmed> 1371311</pubmed></ref>。上衣細胞の発生開始の時期は領域によって異なるが、げっ歯類においてはどの領域でも最終分裂から繊毛の出現までは1週間程度の時間がかかる。上衣細胞の前駆細胞にあたる放射状グリアは、脳室に面した頂端表面から1本の一次繊毛を伸ばしており、上衣細胞へと分化する際には一次繊毛が存在した頂端表面内の領域に運動性繊毛が形成される<ref name=ref12><pubmed> 20164345</pubmed></ref>。その後、細胞質に、deuterosome(基底小体前駆体)と呼ばれる繊毛の基底小体の形成中心としてはたらく球状の構造体が多数出現する<ref><pubmed> 5111878</pubmed></ref>。未熟な基底小体がdeuterosomeから脳室側の細胞膜へと移動して結合した後、繊毛の伸長が始まる。繊毛の伸長と共に繊毛運動が始まるが、これと同時にdeuterosomeが消失し、基底小体は脳脊髄液流の方向に配向する。上衣細胞内での繊毛運動の配向が揃い、基底小体及び繊毛が細胞前方へと移動した後、上衣細胞間における協調した繊毛運動が観察される<ref name=ref14><pubmed> 20305650</pubmed></ref>(図2)。<br> 放射状グリアは、上記のように上衣細胞に分化する細胞群に加えて、アストロサイトに分化する細胞群も存在する。特に、脳室下帯では、脳室面に一次繊毛を伸長するアストロサイトが成体神経幹細胞としてはたらく<ref><pubmed> 19153578</pubmed></ref>(図1D)。成体脳側脳室の脳室壁では、神経幹細胞の周囲を上衣細胞が風車状に取り囲んでいる様子とそのような構造の形成機構が近年報告された<ref name=ref16><pubmed> 22862947</pubmed></ref><ref name=ref17><pubmed> 18786414</pubmed></ref>。このユニークな形態学的特徴の意味は現在のところ不明であるが、放射状グリアから上衣細胞及び神経幹細胞への分化メカニズムを把握する上で、この構造の詳細を理解することが重要と考えられている。  


===1-2. 上衣細胞発生の分子機構===<br> 上衣細胞の発生において、FoxJ1及びそれに関連する転写因子群が上衣細胞の分化過程に関与することが示されている。FoxJ1はforkhead (Fox) DNA結合ドメインを持つ転写因子の1つで、運動性繊毛を持つ細胞に特異的に発現している。FoxJ1欠損マウスでは、繊毛運動に関与するモータータンパク質であるdynein及びkinesinが減少するため、基底小体の細胞膜への移動及び繊毛形成ができない<ref><pubmed> 10873152</pubmed></ref><ref><pubmed> 19906869</pubmed></ref><ref><pubmed> 19011629</pubmed></ref><ref><pubmed> 19011630</pubmed></ref>。また、FoxJ1はE-cadherinやN-cadherinに結合するアダプタータンパク質ankyrin G (Ank3) の発現を制御しており、Ank3変異マウスでは発達途中の上衣細胞同士の細胞膜結合や接着結合が減少して、正常に分化できないことが報告されている<ref><pubmed> 21745638</pubmed></ref>。さらに、FoxJ1プロモーター結合因子の1つであるregulatory factor X-3 (RFX3) は、dynein遺伝子のプロモーター配列にも結合し、発達中の上衣細胞における繊毛の伸長や繊毛運動の頻度に影響を及ぼすことが示唆されている<ref><pubmed> 19671664</pubmed></ref>。<br> 放射状グリアから上衣細胞への分化が正常に進行しないと、上衣細胞腫を生じる可能性がある。上衣細胞腫は中枢神経系腫瘍の10%を占める腫瘍であり、典型的な上衣細胞の微細構造や免疫組織化学的特徴を示す<ref><pubmed> 9812425</pubmed></ref>。腫瘍化の原因として、放射状グリアの分裂面の配向性や接着結合、Notchシグナル制御の異常が示唆されている<ref><pubmed> 17179988</pubmed></ref>。  
===1-2. 上衣細胞発生の分子機構===<br> 上衣細胞の発生において、FoxJ1及びそれに関連する転写因子群が上衣細胞の分化過程に関与することが示されている。FoxJ1はforkhead (Fox) DNA結合ドメインを持つ転写因子の1つで、運動性繊毛を持つ細胞に特異的に発現している。FoxJ1欠損マウスでは、繊毛運動に関与するモータータンパク質であるdynein及びkinesinが減少するため、基底小体の細胞膜への移動及び繊毛形成ができない<ref><pubmed> 10873152</pubmed></ref><ref><pubmed> 19906869</pubmed></ref><ref><pubmed> 19011629</pubmed></ref><ref><pubmed> 19011630</pubmed></ref>。また、FoxJ1はE-cadherinやN-cadherinに結合するアダプタータンパク質ankyrin G (Ank3) の発現を制御しており、Ank3変異マウスでは発達途中の上衣細胞同士の細胞膜結合や接着結合が減少して、正常に分化できないことが報告されている<ref><pubmed> 21745638</pubmed></ref>。さらに、FoxJ1プロモーター結合因子の1つであるregulatory factor X-3 (RFX3) は、dynein遺伝子のプロモーター配列にも結合し、発達中の上衣細胞における繊毛の伸長や繊毛運動の頻度に影響を及ぼすことが示唆されている<ref><pubmed> 19671664</pubmed></ref>。<br> 放射状グリアから上衣細胞への分化が正常に進行しないと、上衣細胞腫を生じる可能性がある。上衣細胞腫は中枢神経系腫瘍の10%を占める腫瘍であり、典型的な上衣細胞の微細構造や免疫組織化学的特徴を示す<ref><pubmed> 9812425</pubmed></ref>。腫瘍化の原因として、放射状グリアの分裂面の配向性や接着結合、Notchシグナル制御の異常が示唆されている<ref><pubmed> 17179988</pubmed></ref>。  


===1-3. 上衣細胞成熟の分子機構===<br> 上衣細胞が正常に発達し機能するためには、細胞間での協調した繊毛運動が必要不可欠である。上衣細胞が成熟するにつれて、1本1本の繊毛が伸長し運動を始め、脳脊髄液流を生み出す。生み出された液流が基底小体の向きを同じ方向へと配向させ、協調した繊毛運動となる。この過程は平面細胞極性(Planar Cell Polarity; PCP)の形成と呼ばれ、2種類の極性が提唱されている<ref><pubmed> 22101065</pubmed></ref>(図2E)。<br> 1つ目は“Rotational Polarity”であり、基底小体及び基底仮足の配向を示す<ref><pubmed> 20164345</pubmed></ref>。発達中の上衣細胞において、Wnt/PCPシグナルの構成因子であるVangl2は細胞頂端部/後部の境界面及び繊毛に沿って局在しており、基底小体を液流の方向へ配向させる役割を担っていることが示唆されている<ref><pubmed> 20305650</pubmed></ref>。別のPCPシグナル因子であるDvl2やCelsr2/3もRotational Polarityの形成に必要であることが報告されている<ref><pubmed> 20685736</pubmed></ref><ref><pubmed> 20473291</pubmed></ref>。<br> もう1つは“Translational Polarity”であり、基底小体及び繊毛の細胞内前方への移動を示す。上衣細胞の前駆細胞である放射状グリアは1本の一次繊毛を有しており、細胞内前方に位置している。一次繊毛を欠失する変異体では、上衣細胞のTranslational Polarityが障害されることから、放射状グリアの極性が上衣細胞に分化しても引き継がれていることが示唆されている<ref><pubmed> 20164345</pubmed></ref>[12]。non-muscle myosin II は上衣細胞に発現しており、その機能阻害によってRotational Polarityを阻害することなくTranslational Polarityのみが阻害される<ref><pubmed> 20685736</pubmed></ref>。このことから、上衣細胞の成熟に関与する2つの極性形成はそれぞれ独自のメカニズムで制御されていると考えられている。<br>  
===1-3. 上衣細胞成熟の分子機構===<br> 上衣細胞が正常に発達し機能するためには、細胞間での協調した繊毛運動が必要不可欠である。上衣細胞が成熟するにつれて、1本1本の繊毛が伸長し運動を始め、脳脊髄液流を生み出す。生み出された液流が基底小体の向きを同じ方向へと配向させ、協調した繊毛運動となる。この過程は平面細胞極性(Planar Cell Polarity; PCP)の形成と呼ばれ、2種類の極性が提唱されている<ref><pubmed> 22101065</pubmed></ref>(図2E)。<br> 1つ目は“Rotational Polarity”であり、基底小体及び基底仮足の配向を示す<ref name=ref12 />。発達中の上衣細胞において、Wnt/PCPシグナルの構成因子であるVangl2は細胞頂端部/後部の境界面及び繊毛に沿って局在しており、基底小体を液流の方向へ配向させる役割を担っていることが示唆されている<ref name=ref14 />。別のPCPシグナル因子であるDvl2やCelsr2/3もRotational Polarityの形成に必要であることが報告されている<ref name=ref27><pubmed> 20685736</pubmed></ref><ref><pubmed> 20473291</pubmed></ref>。<br> もう1つは“Translational Polarity”であり、基底小体及び繊毛の細胞内前方への移動を示す。上衣細胞の前駆細胞である放射状グリアは1本の一次繊毛を有しており、細胞内前方に位置している。一次繊毛を欠失する変異体では、上衣細胞のTranslational Polarityが障害されることから、放射状グリアの極性が上衣細胞に分化しても引き継がれていることが示唆されている<ref name=ref12 />。non-muscle myosin II は上衣細胞に発現しており、その機能阻害によってRotational Polarityを阻害することなくTranslational Polarityのみが阻害される<ref name=ref27 />。このことから、上衣細胞の成熟に関与する2つの極性形成はそれぞれ独自のメカニズムで制御されていると考えられている。<br>  


==2. 上衣細胞の種類と形態==<br> 上衣細胞は形態学的に大きく2種類に分類される。1つは繊毛を持つ立方形の形態をした上衣細胞 (Ependymal cells)であり、繊毛の本数により、多数の繊毛を持つE1細胞及び2本の繊毛を持つE2 細胞の2種類に分類される[17]。もう1つは双極性で、繊毛をほとんどもしくは全く持たない伸長上衣細胞 (Tanycytes) である[29]。2種類の上衣細胞は分布も異なっており、上衣細胞が側脳室、第3脳室、第4脳室の壁面に存在しているのに対し、伸長上衣細胞は主に第3脳室壁に存在している。E2細胞は全ての脳室壁に存在しているが数は少なく、側脳室壁においては全体の約5%である[17]。脳室から続く脊髄中心管には繊毛を1~3本持つ上衣細胞 (Central canal ependymal cells) が存在する[30,31]。  
==2. 上衣細胞の種類と形態==<br> 上衣細胞は形態学的に大きく2種類に分類される。1つは繊毛を持つ立方形の形態をした上衣細胞 (Ependymal cells)であり、繊毛の本数により、多数の繊毛を持つE1細胞及び2本の繊毛を持つE2 細胞の2種類に分類される<ref name=ref17 />。もう1つは双極性で、繊毛をほとんどもしくは全く持たない伸長上衣細胞 (Tanycytes) である<ref><pubmed> 5017852</pubmed></ref>。2種類の上衣細胞は分布も異なっており、上衣細胞が側脳室、第3脳室、第4脳室の壁面に存在しているのに対し、伸長上衣細胞は主に第3脳室壁に存在している。E2細胞は全ての脳室壁に存在しているが数は少なく、側脳室壁においては全体の約5%である<ref name=ref17 />。脳室から続く脊髄中心管には繊毛を1~3本持つ上衣細胞 (Central canal ependymal cells) が存在する<ref><pubmed> 19747531</pubmed></ref><ref><pubmed> 18651793</pubmed></ref>。  


===2-1. E1細胞===<br> 多数の繊毛(1細胞に32-73本)[17]を持つE1細胞は、免疫組織化学的には、S100beta、Sox2、CD24、CD133、vimentin陽性である。透過電子顕微鏡による微細構造の観察では、E1細胞は電子密度の低い明るい細胞質や、分散したクロマチンを持つ球状の細胞核を持つ[17,32]。繊毛の基底小体付近には数多くのミトコンドリアが局在し、上衣細胞の側方面には接着結合、密着結合、ギャップ結合が観察される。  
===2-1. E1細胞===<br> 多数の繊毛(1細胞に32-73本)<ref><pubmed> 18786414</pubmed></ref>を持つE1細胞は、免疫組織化学的には、S100beta、Sox2、CD24、CD133、vimentin陽性である。透過電子顕微鏡による微細構造の観察では、E1細胞は電子密度の低い明るい細胞質や、分散したクロマチンを持つ球状の細胞核を持つ<ref name=ref17 /><ref name=ref32><pubmed> 9185542</pubmed></ref>。繊毛の基底小体付近には数多くのミトコンドリアが局在し、上衣細胞の側方面には接着結合、密着結合、ギャップ結合が観察される。  


===2-2. E2細胞===<br> E2細胞はE1細胞と同様に脳室壁に存在し、免疫組織化学的には、S100beta、CD24、vimentin、GFAP陽性である。透過電子顕微鏡による微細構造の観察では、E2細胞は基本的にE1細胞と同様の形態学的特徴を持つが、多数のミトコンドリアが基底小体付近ではなく核近傍に存在している点、基底小体近傍に電子密度の高い粒子の凝集体が存在する点、が異なる。E2細胞は複雑な構造の基底小体を2つ持ち、そこから2本の運動性繊毛が伸長している[17]。  
===2-2. E2細胞===<br> E2細胞はE1細胞と同様に脳室壁に存在し、免疫組織化学的には、S100beta、CD24、vimentin、GFAP陽性である。透過電子顕微鏡による微細構造の観察では、E2細胞は基本的にE1細胞と同様の形態学的特徴を持つが、多数のミトコンドリアが基底小体付近ではなく核近傍に存在している点、基底小体近傍に電子密度の高い粒子の凝集体が存在する点、が異なる。E2細胞は複雑な構造の基底小体を2つ持ち、そこから2本の運動性繊毛が伸長している<ref name=ref17 />。  


===2-3. 伸長上衣細胞===<br> 伸長上衣細胞は、基底面から長い放射状の突起を血管や神経核、隣接した上衣細胞、アストロサイト等に伸ばしている双極性の細胞である[6,33]。伸長上衣細胞は、脳室壁内の位置や形態、微細構造の違いによってalpha1、alpha2、beta1、beta2の4種類に分類されている[33]。免疫組織化学的には、上衣細胞と同様にS100beta、Sox2、vimentin陽性である一方、GFAP、nestin、GLAST陽性を示し、アストロサイトや放射状グリアの特徴も併せ持つ。さらには、GABAやグルタミン酸など神経伝達物質の受容体を発現している。透過電子顕微鏡による観察では、伸長上衣細胞は、クロマチン凝集を示す不規則な形態の核と、ミトコンドリアやリソソーム、多数の粗面小胞体、大きなゴルジ体を含んだ電子密度の高い細胞質が特徴である[32]。  
===2-3. 伸長上衣細胞===<br> 伸長上衣細胞は、基底面から長い放射状の突起を血管や神経核、隣接した上衣細胞、アストロサイト等に伸ばしている双極性の細胞である[6,33]。伸長上衣細胞は、脳室壁内の位置や形態、微細構造の違いによってalpha1、alpha2、beta1、beta2の4種類に分類されている[33]。免疫組織化学的には、上衣細胞と同様にS100beta、Sox2、vimentin陽性である一方、GFAP、nestin、GLAST陽性を示し、アストロサイトや放射状グリアの特徴も併せ持つ。さらには、GABAやグルタミン酸など神経伝達物質の受容体を発現している。透過電子顕微鏡による観察では、伸長上衣細胞は、クロマチン凝集を示す不規則な形態の核と、ミトコンドリアやリソソーム、多数の粗面小胞体、大きなゴルジ体を含んだ電子密度の高い細胞質が特徴である[32]。  
33

回編集

案内メニュー