「情動系神経回路」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
(ページの作成:「== 要約 ==  古くから情動発現に介在する神経回路の研究が進められてきた。前半は情動系神経回路同定の歴史を概観する。初...」)
 
編集の要約なし
9行目: 9行目:
== 情動系神経回路同定の歴史 ==
== 情動系神経回路同定の歴史 ==


[[Image:情動系神経回路1.png|thumb|300px|'''図1. ]]
[[Image:情動系神経回路1.png|thumb|300px|'''図1.Papezの情動回路 ''']]


 Bardが唱えた情動体験における視床下部の重要性とともに、新皮質から視床下部に加えられていた抑制が解放されることによって情動が生じるとするCannonの視床説は、Cannon- Bardの中枢(視床)説と呼ばれている。そして、Papez は視床下部を含む情動回路(Papezの情動回路)を提唱した(図1)。Papezの情動回路では、情動表出の中枢は視床下部乳頭体が担い、情動表出は乳頭体から中脳への出力によりなされると考えられている。感覚刺激の情報は腹側視床を介して視床下部に入力され、その情報は視床前核を経て帯状回に伝達される。そして、Papezは視床前核から入力を受ける帯状回が大脳皮質における情動の受容野であり、主観的な情動体験の座であると考えた。また、海馬体はこの帯状回や他の領域からの入力を組織化し、中枢性の情動過程を形成して、脳弓を介して視床下部乳頭体に出力する。すなわち、帯状回-海馬体-視床下部の経路により、皮質レベルにおける情動体験が視床下部から出力される情動表出に統合される。その後、MacLeanはPapezの情動回路を“大脳辺縁系(辺縁系:limbic system)”と名づけ、さらにこの辺縁系に視床下部の一部、扁桃体、前頭葉眼窩皮質、および、側坐核を付け加えている。
 Bardが唱えた情動体験における視床下部の重要性とともに、新皮質から視床下部に加えられていた抑制が解放されることによって情動が生じるとするCannonの視床説は、Cannon- Bardの中枢(視床)説と呼ばれている。そして、Papez は視床下部を含む情動回路(Papezの情動回路)を提唱した(図1)。Papezの情動回路では、情動表出の中枢は視床下部乳頭体が担い、情動表出は乳頭体から中脳への出力によりなされると考えられている。感覚刺激の情報は腹側視床を介して視床下部に入力され、その情報は視床前核を経て帯状回に伝達される。そして、Papezは視床前核から入力を受ける帯状回が大脳皮質における情動の受容野であり、主観的な情動体験の座であると考えた。また、海馬体はこの帯状回や他の領域からの入力を組織化し、中枢性の情動過程を形成して、脳弓を介して視床下部乳頭体に出力する。すなわち、帯状回-海馬体-視床下部の経路により、皮質レベルにおける情動体験が視床下部から出力される情動表出に統合される。その後、MacLeanはPapezの情動回路を“大脳辺縁系(辺縁系:limbic system)”と名づけ、さらにこの辺縁系に視床下部の一部、扁桃体、前頭葉眼窩皮質、および、側坐核を付け加えている。
21行目: 21行目:
=== 恐怖の古典的条件づけ ===
=== 恐怖の古典的条件づけ ===


[[Image:情動系神経回路2.png|thumb|300px|'''図2. ]]
[[Image:情動系神経回路2.png|thumb|300px|'''図2. 音刺激をCSとした恐怖の古典的条件づけに介在する神経経路<br>(Johansen et al.,2011を改変)'''<br>Abbreviations: LAd, the dorsal subnucleus in the lateral nucleus of the amygdala; LAvl, the ventrolateral subnucleus in the lateral nucleus of the amygdala; LAm, the medial subnucleus in the lateral nucleus of the amygdala; ICM, intercalated cell masses.]]


[[Image:情動系神経回路3.png|thumb|300px|'''図3. ]]
[[Image:情動系神経回路3.png|thumb|300px|'''図3. 恐怖の古典的条件づけに介在する連合学習・記憶を担うシナプスの可塑性の分子メカニズムに関する仮説<br>(Johansen et al.,2011を改変)'''<br>Abbreviations: AC, adenyl cyclase; AKAP, A-kinase anchoring protein; Arc, activity-regulated cytoskeletal-associated protein;β-AR, β-adrenergic receptor; BDNF, brain-derived neurotrophic factor; Ca2+, calcium; CaMKⅡ, Ca2+/calmodulin (Cam)-dependent protein kinase II; CREB, cAMP response element (CRE) binding protein; EGR-1, early growth response gene 1; GluA1, glutamate AMPA receptor subunit 1; GluA2/3, glutamate AMPA receptor subunit 2 and 3 heteromer; IP3, inositol 1,4,5-triphosphate; MAPK, mitogen-activated protein kinase; mGluR, metabotropic glutamate receptor; mTOR, mammalian target of rapamycin; NF-kB, nuclear factor κ light-chain enhancer of activated B cells; NMDAR, N-methyl-d-aspartate glutamate receptor; NO, nitric oxide; NOS, nitric oxide synthase; NSF, N-ethylmaleimide- sensitive factor; Pl3-K, phosphatidylinositol-3 kinase; PKA, protein kinase A; PKC, protein kinase C; PKG, cGMP-dependent protein kinase; PKMζ, protein kinase Mζ; RNA, ribonucleic acid; TrkB, tyrosine kinase B; VGCC, voltage-gated calcium channel.]]
 
 
 この手続きでは、音や光などそれ自体では恐怖反応を引き起こさない中性的な刺激(条件刺激conditioned stimulus)と電気ショックなどの恐怖刺激(無条件刺激unconditioned stimulus)を時間的に関連づけて呈示する(対呈示)。CSに対して実験動物が恐怖を獲得したかどうかは、CSの呈示に対して恐怖反応を示すかどうかを行動指標を用いて確かめる。このことから、恐怖の古典的条件づけの獲得には恐怖反応の表出とCS-USの連合学習・記憶という2つの側面が内在している。神経細胞レベルでは、CS-USの連合学習・記憶には脳内で新たなシナプス神経経路の形成・維持を担う学習・記憶機構が関与し、恐怖反応の表出には生得的に備わっている脳内のハードウエア(神経経路)が関与していると考えられている。すなわち、恐怖の古典的条件づけに基づく学習・記憶機能により、CSに関する情報処理経路と恐怖反応の表出に関与する神経経路が繋がり、その結果、CSを呈示しただけで恐怖反応が起こるようになると考えられる。
 この手続きでは、音や光などそれ自体では恐怖反応を引き起こさない中性的な刺激(条件刺激conditioned stimulus)と電気ショックなどの恐怖刺激(無条件刺激unconditioned stimulus)を時間的に関連づけて呈示する(対呈示)。CSに対して実験動物が恐怖を獲得したかどうかは、CSの呈示に対して恐怖反応を示すかどうかを行動指標を用いて確かめる。このことから、恐怖の古典的条件づけの獲得には恐怖反応の表出とCS-USの連合学習・記憶という2つの側面が内在している。神経細胞レベルでは、CS-USの連合学習・記憶には脳内で新たなシナプス神経経路の形成・維持を担う学習・記憶機構が関与し、恐怖反応の表出には生得的に備わっている脳内のハードウエア(神経経路)が関与していると考えられている。すなわち、恐怖の古典的条件づけに基づく学習・記憶機能により、CSに関する情報処理経路と恐怖反応の表出に関与する神経経路が繋がり、その結果、CSを呈示しただけで恐怖反応が起こるようになると考えられる。
37行目: 37行目:
===認知的情報処理経路モデル===
===認知的情報処理経路モデル===


[[Image:情動系神経回路4.png|thumb|300px|'''図4. ]]
[[Image:情動系神経回路4.png|thumb|300px|'''図4.恐怖の古典的条件づけにおける認知的情報処理経路のモデル'''<br>(McNally, Johansen, & Blair, 2011に基づいて作成) ]]


 近年、これまで学習心理学の分野において構築されてきた古典的条件づけの学習理論に対応する神経基盤をも含めた後天的情動系神経経路が詳細に描かれつつあり、ヒトの後天的な感情異常の治療に対して認知的にアプローチできる可能性が示されている。情動の神経科学者が学習理論に注目している点は、実際に呈示されたUS強度と、被験体が予期しているUS強度である。たとえば、レスコーラ-ワグナーモデル(Rescorla-Wagner model)では、あるCSとUSの対呈示試行における条件づけ強度の変化は、実際のUSの強度とCSに対して条件づけられた総強度(予期的US強度)の差(error signal)に、CSの明瞭度などの定数をかけた値として定義される。error signalがプラスの時には興奮性の条件づけ強度の変化が生じ、マイナスのときには制止性の変化が生じる。神経生理学的には、error signalがプラスの時には神経細胞は発火頻度を増加し、マイナスの時にはその頻度は減少すると考えられている。CSとUSの連合学習・記憶は扁桃体外側核ニューロンにおいて生じるシナプスの可塑性が担っていることは前述した。このことから、扁桃体外側核はerror signalの情報を受け取り、それらの情報によってシナプスの可塑性が調節されると考えられる。これまでの研究により、error signalの情報はフリージングなどの表出に関係している中脳中心灰白質から生じていると考えられている。たとえば、音CSとショックUSの対呈示が進むにつれて、外側核と中脳中心灰白質のUSに対する応答強度は減少したが、条件性恐怖反応の表出は増加したという結果が報告されている。また、十分にCSとUSの対呈示訓練を受けたラットにおいて、外側核と中脳中心灰白質のUSに対する応答強度は、CSによってシグナルされたときよりもシグナルされなかったときの方が強かった。これらの結果は、外側核と中脳中心灰白質のUSに対する応答の減少が、USの予期の形成とerror signalの減少によって生じたことを示唆する。中脳中心灰白質は扁桃体外側核に直接の神経投射をしていないため、神経解剖学的知見に基づいて、中脳中心灰白質からいくつかの脳部位を経由して扁桃体外側核にerror signalの情報が伝達される仮説が提唱されている。図4は予期的US強度やerror signalなどの情報の処理回路として提唱されているモデルである。今後、この認知的情報処理経路モデルの実証的研究が進むと思われるが、実証された知見は、感情異常の治療に対する認知行動療法のエビデンスとして活用が期待される。
 近年、これまで学習心理学の分野において構築されてきた古典的条件づけの学習理論に対応する神経基盤をも含めた後天的情動系神経経路が詳細に描かれつつあり、ヒトの後天的な感情異常の治療に対して認知的にアプローチできる可能性が示されている。情動の神経科学者が学習理論に注目している点は、実際に呈示されたUS強度と、被験体が予期しているUS強度である。たとえば、レスコーラ-ワグナーモデル(Rescorla-Wagner model)では、あるCSとUSの対呈示試行における条件づけ強度の変化は、実際のUSの強度とCSに対して条件づけられた総強度(予期的US強度)の差(error signal)に、CSの明瞭度などの定数をかけた値として定義される。error signalがプラスの時には興奮性の条件づけ強度の変化が生じ、マイナスのときには制止性の変化が生じる。神経生理学的には、error signalがプラスの時には神経細胞は発火頻度を増加し、マイナスの時にはその頻度は減少すると考えられている。CSとUSの連合学習・記憶は扁桃体外側核ニューロンにおいて生じるシナプスの可塑性が担っていることは前述した。このことから、扁桃体外側核はerror signalの情報を受け取り、それらの情報によってシナプスの可塑性が調節されると考えられる。これまでの研究により、error signalの情報はフリージングなどの表出に関係している中脳中心灰白質から生じていると考えられている。たとえば、音CSとショックUSの対呈示が進むにつれて、外側核と中脳中心灰白質のUSに対する応答強度は減少したが、条件性恐怖反応の表出は増加したという結果が報告されている。また、十分にCSとUSの対呈示訓練を受けたラットにおいて、外側核と中脳中心灰白質のUSに対する応答強度は、CSによってシグナルされたときよりもシグナルされなかったときの方が強かった。これらの結果は、外側核と中脳中心灰白質のUSに対する応答の減少が、USの予期の形成とerror signalの減少によって生じたことを示唆する。中脳中心灰白質は扁桃体外側核に直接の神経投射をしていないため、神経解剖学的知見に基づいて、中脳中心灰白質からいくつかの脳部位を経由して扁桃体外側核にerror signalの情報が伝達される仮説が提唱されている。図4は予期的US強度やerror signalなどの情報の処理回路として提唱されているモデルである。今後、この認知的情報処理経路モデルの実証的研究が進むと思われるが、実証された知見は、感情異常の治療に対する認知行動療法のエビデンスとして活用が期待される。

案内メニュー