80
回編集
Takaohonda (トーク | 投稿記録) 細編集の要約なし |
Takaohonda (トーク | 投稿記録) 細編集の要約なし |
||
93行目: | 93行目: | ||
大脳新皮質の興奮性神経細胞は脳室帯で誕生後、脳の表面方向に移動し、最初期に誕生した神経細胞で形成されるプレプレートと呼ばれる細胞層の間に入り込んで、これをCajal-Retzius細胞を含む辺縁帯とサブプレートと呼ばれる二つの層に分離する(プレプレートスプリッティング)。神経細胞は辺縁帯の直下で移動を終了し、樹状突起を発達させて最終分化を行なう。神経細胞は次々に脳室帯で誕生して脳表面方向に移動するが、誕生時期の遅い神経細胞は誕生時期の早い神経細胞に追い越され、より脳の表層側に配置されるようになる。この配置パターンは“インサイドアウト”と呼ばれ、ほ乳類の大脳新皮質でのみ観察される特徴的な細胞構築様式である。 | 大脳新皮質の興奮性神経細胞は脳室帯で誕生後、脳の表面方向に移動し、最初期に誕生した神経細胞で形成されるプレプレートと呼ばれる細胞層の間に入り込んで、これをCajal-Retzius細胞を含む辺縁帯とサブプレートと呼ばれる二つの層に分離する(プレプレートスプリッティング)。神経細胞は辺縁帯の直下で移動を終了し、樹状突起を発達させて最終分化を行なう。神経細胞は次々に脳室帯で誕生して脳表面方向に移動するが、誕生時期の遅い神経細胞は誕生時期の早い神経細胞に追い越され、より脳の表層側に配置されるようになる。この配置パターンは“インサイドアウト”と呼ばれ、ほ乳類の大脳新皮質でのみ観察される特徴的な細胞構築様式である。 | ||
Dab1欠損マウスでは神経細胞は正常に産生され、神経細胞はプレプレートの間に入ることが出来ず、プレプレートスプリッティングが起らない。その為、辺縁帯が存在しない。後続の神経細胞は、先に誕生した神経細胞を追い越すことが出来ずに、脳表面から順番に深層に積み重なって行き、“アウトサイドイン”と呼ばれる異常な異常な層構造を形成するようになり、大体の層構造が逆転する異常が観察される。異常な層構造中には、internal plexiform zoneと呼ばれる細胞密度の低い領域が散在し、この部分に視床からサブプレートに投射するアクソンが走行し、また、興奮性神経細胞からは樹状突起がこの領域に向かい展開される。 | Dab1欠損マウスでは神経細胞は正常に産生され、神経細胞はプレプレートの間に入ることが出来ず、プレプレートスプリッティングが起らない。その為、辺縁帯が存在しない。後続の神経細胞は、先に誕生した神経細胞を追い越すことが出来ずに、脳表面から順番に深層に積み重なって行き、“アウトサイドイン”と呼ばれる異常な異常な層構造を形成するようになり、大体の層構造が逆転する異常が観察される。異常な層構造中には、internal plexiform zoneと呼ばれる細胞密度の低い領域が散在し、この部分に視床からサブプレートに投射するアクソンが走行し、また、興奮性神経細胞からは樹状突起がこの領域に向かい展開される。 | ||
98行目: | 99行目: | ||
dab1欠損により引き起こされるこれらの神経細胞の移動障害が、dab1が欠損した細胞自身の障害によるものなのか、あるいは、dab1を欠損した周囲の細胞によって引き起こされた二次的な原因によるものなのか、あるいは両方なのか、Dab1の機能を解明する上で、焦点となった。この問題を解決するため、野生型Dab1を持つ細胞とDab1を欠損した細胞のキメラマウスが作成された。その結果、野生型のDab1を持つ細胞群がDab1を欠損した細胞群の上に配置されるような大脳新皮質(スーパーコルテックス)が形成される一方、少数の野生型細胞がDab1欠損細胞群中に取り込まれることが示された。この結果より、Dab1欠損による細胞の移動障害は主には細胞内因性の障害によって引き起こされているが、一部は周囲の細胞の障害にも影響されていることが示唆された。また、dab1を欠損したyotariマウスにdab1をin utero エレクトロポレーション(electroporation)法により、導入してやることにより、Dab1をレスキューした場合においてもdab1を導入された神経細胞はDab1を欠損した神経細胞を追い越して、脳表層まで到達し、プレプレートスプリッティングも引き起こすことから、dab1欠損による移動障害が主には細胞内在性に引き起こされていることが示唆されている。 | dab1欠損により引き起こされるこれらの神経細胞の移動障害が、dab1が欠損した細胞自身の障害によるものなのか、あるいは、dab1を欠損した周囲の細胞によって引き起こされた二次的な原因によるものなのか、あるいは両方なのか、Dab1の機能を解明する上で、焦点となった。この問題を解決するため、野生型Dab1を持つ細胞とDab1を欠損した細胞のキメラマウスが作成された。その結果、野生型のDab1を持つ細胞群がDab1を欠損した細胞群の上に配置されるような大脳新皮質(スーパーコルテックス)が形成される一方、少数の野生型細胞がDab1欠損細胞群中に取り込まれることが示された。この結果より、Dab1欠損による細胞の移動障害は主には細胞内因性の障害によって引き起こされているが、一部は周囲の細胞の障害にも影響されていることが示唆された。また、dab1を欠損したyotariマウスにdab1をin utero エレクトロポレーション(electroporation)法により、導入してやることにより、Dab1をレスキューした場合においてもdab1を導入された神経細胞はDab1を欠損した神経細胞を追い越して、脳表層まで到達し、プレプレートスプリッティングも引き起こすことから、dab1欠損による移動障害が主には細胞内在性に引き起こされていることが示唆されている。 | ||
では、Dab1の欠損により、何が一次的に障害されているのか?、この問題を解明する為に、周囲の細胞が正常な環境下で、一部の神経細胞でのみDab1の機能を阻害し、dab1の欠損によりどんな移動障害が引き起こされるのかが詳細に観察された。大脳新皮質の興奮性神経細胞は誕生時期の違いにより、異なる移動過程を経ることが知られている。早生まれの神経細胞は脳室帯(ventricular zone)で誕生した後、もともと脳の表層にアンカリングしてあった、突起を用いて細胞体を引き上げるsomal translocationと呼ばれる形式で、移動する。一方、遅生まれの神経細胞は脳室帯で誕生した後、脳室下帯(subventricular zone)の直上で多極性の形態(多極性細胞)をとり、突起を出したり縮めたりしながら多極性移動(multipolar migration)と呼ばれる移動を行い、その後、紡錘形の形態にトランスフォームして脳表面にlocomotionと呼ばれる方式で移動する。さらに、脳表面付近では神経細胞の進行方向に長く伸びた先導突起(leading process)と呼ばれる突起を辺縁帯(marginal zone)付近まで伸ばし、核を引き上げる様に移動するターミナルトランスロケーションと呼ばれる移動を行う。in utero electroporationによってdab1のノックダウンが行われた結果、dab1がノックダウンされた神経細胞は脳の表層近くまで移動するが、移動の最終過程であるターミナルトランスロケーションと樹状突起の発達が障害されていることが示された。また、dab1のコンディショナルノックアウトマウスを用いた実験では、早生まれの細胞ではsomal translocationが阻害され、遅生まれの細胞ではteriminal translocationが阻害されていた。これらの実験により、Dab1は早生まれの神経細胞ではsomal translocationを、遅生まれの神経細胞ではteriminal translocationをDab1が制御していることが示唆された。 | では、Dab1の欠損により、何が一次的に障害されているのか?、この問題を解明する為に、周囲の細胞が正常な環境下で、一部の神経細胞でのみDab1の機能を阻害し、dab1の欠損によりどんな移動障害が引き起こされるのかが詳細に観察された。大脳新皮質の興奮性神経細胞は誕生時期の違いにより、異なる移動過程を経ることが知られている。早生まれの神経細胞は脳室帯(ventricular zone)で誕生した後、もともと脳の表層にアンカリングしてあった、突起を用いて細胞体を引き上げるsomal translocationと呼ばれる形式で、移動する。一方、遅生まれの神経細胞は脳室帯で誕生した後、脳室下帯(subventricular zone)の直上で多極性の形態(多極性細胞)をとり、突起を出したり縮めたりしながら多極性移動(multipolar migration)と呼ばれる移動を行い、その後、紡錘形の形態にトランスフォームして脳表面にlocomotionと呼ばれる方式で移動する。さらに、脳表面付近では神経細胞の進行方向に長く伸びた先導突起(leading process)と呼ばれる突起を辺縁帯(marginal zone)付近まで伸ばし、核を引き上げる様に移動するターミナルトランスロケーションと呼ばれる移動を行う。in utero electroporationによってdab1のノックダウンが行われた結果、dab1がノックダウンされた神経細胞は脳の表層近くまで移動するが、移動の最終過程であるターミナルトランスロケーションと樹状突起の発達が障害されていることが示された。また、dab1のコンディショナルノックアウトマウスを用いた実験では、早生まれの細胞ではsomal translocationが阻害され、遅生まれの細胞ではteriminal translocationが阻害されていた。これらの実験により、Dab1は早生まれの神経細胞ではsomal translocationを、遅生まれの神経細胞ではteriminal translocationをDab1が制御していることが示唆された。 | ||
Dab1がterminal tranlocationを制御する分子機構については、N-cadherinとIntegrinが関与していることが実験的に示唆されている。大脳新皮質神経細胞のReelin刺激により、Dab1のチロシンリン酸化が起こり、ここにCrkを介するC3Gの活性化、続くRap1の活性化が起こることが培養細胞を用いた実験により知られていた為、Rap1のエフェクターとして既に知られていたN-cadherinの関与が調べられた。実験では、Rap1の不活性化因子であるRap1GAPを強制発現させることにより、Rap1を不活性化した。これにより、神経細胞の移動が障害され、皮質板に侵入する神経細胞の割合が減少する。Rap1はN-cadherinの細胞内から細胞表面への輸送に関わっていることが知られていたことから、Rap1GAPとN-cadherinを同時に発現させた所、Rap1GAPによる神経細胞の移動障害が抑制されることが示唆された。この結果により、間接的ではあるが、Reelin-Dab1シグナルがRap1を介してN-cadherinの細胞表面への輸送制御を行うことにより、神経細胞移動を制御している可能性が示唆された。一方活性化型Integrin beta 1を認識する抗体がターミナルトランスロケーションが起る原皮質帯(primitive cortical zone、PCZ)と呼ばれる部位に多いこと、reelerマウスやyotariマウスではIntegrin beta1の活性化が観察されないこと、Reelin刺激した神経細胞はfibronectinに対する接着性が上昇すること等から、Rap1の下流分子として知られていた | Dab1がterminal tranlocationを制御する分子機構については、N-cadherinとIntegrinが関与していることが実験的に示唆されている。大脳新皮質神経細胞のReelin刺激により、Dab1のチロシンリン酸化が起こり、ここにCrkを介するC3Gの活性化、続くRap1の活性化が起こることが培養細胞を用いた実験により知られていた為、Rap1のエフェクターとして既に知られていたN-cadherinの関与が調べられた。実験では、Rap1の不活性化因子であるRap1GAPを強制発現させることにより、Rap1を不活性化した。これにより、神経細胞の移動が障害され、皮質板に侵入する神経細胞の割合が減少する。Rap1はN-cadherinの細胞内から細胞表面への輸送に関わっていることが知られていたことから、Rap1GAPとN-cadherinを同時に発現させた所、Rap1GAPによる神経細胞の移動障害が抑制されることが示唆された。この結果により、間接的ではあるが、Reelin-Dab1シグナルがRap1を介してN-cadherinの細胞表面への輸送制御を行うことにより、神経細胞移動を制御している可能性が示唆された。一方活性化型Integrin beta 1を認識する抗体がターミナルトランスロケーションが起る原皮質帯(primitive cortical zone、PCZ)と呼ばれる部位に多いこと、reelerマウスやyotariマウスではIntegrin beta1の活性化が観察されないこと、Reelin刺激した神経細胞はfibronectinに対する接着性が上昇すること等から、Rap1の下流分子として知られていた | ||
しかしながら、N-cadhelinをリーラーマウスに導入しただけでは、神経細胞の移動がレスキューされないし、また、Integrin beta1のノックアウトマウスやコンディショナルノックアウトマウスではリーラーフェノタイプにはならないことから、これらの働きは部分的であることが考えられる。 | しかしながら、N-cadhelinをリーラーマウスに導入しただけでは、神経細胞の移動がレスキューされないし、また、Integrin beta1のノックアウトマウスやコンディショナルノックアウトマウスではリーラーフェノタイプにはならないことから、これらの働きは部分的であることが考えられる。 | ||
回編集