「コフィリン」の版間の差分

ナビゲーションに移動 検索に移動
37行目: 37行目:
 コフィリンは、[[wikipedia:ja:真核細胞|真核細胞]]全てに存在する生存に必須のタンパク質であり、アクチン結合タンパク質の中で最も存在量の多いタンパク質の一つで細胞内に数μモルの濃度で存在する。発現分布は、[http://mouse.brain-map.org/experiment/show/70719651 非筋肉型コフィリン]、[http://mouse.brain-map.org/experiment/show/74357607 筋肉型コフィリン]、[http://mouse.brain-map.org/experiment/show/69671630 ADF]の3種類のいずれかが全ての細胞に発現しており、[[wikipedia:ja:筋肉|筋肉]]では、主に筋肉型コフィリンが主に発現している<ref><pubmed>8195165</pubmed></ref>。筋組織以外では非筋肉型コフィリンとADFが主に発現している<ref name="ref6"><pubmed>11809832</pubmed></ref><ref name="ref2" />。コフィリンは[[トロポミオシン]]や[[ミオシン]]と競合的にF-アクチンに結合するため<ref name="ref1" /><ref><pubmed>11901171</pubmed></ref>、コフィリンが多く存在する[[ラメリポディア]]や局在がほとんど見られないストレスファイバーなど、アクチン骨格への結合量はアクチン骨格構造によって異なる。しかし、コフィリンの活性阻害実験から、細胞内のアクチン骨格構造はすべてコフィリンの結合により脱重合されることでターンオーバーしていると考えられる<ref><pubmed>15548599</pubmed></ref><ref><pubmed>21868383</pubmed></ref>。
 コフィリンは、[[wikipedia:ja:真核細胞|真核細胞]]全てに存在する生存に必須のタンパク質であり、アクチン結合タンパク質の中で最も存在量の多いタンパク質の一つで細胞内に数μモルの濃度で存在する。発現分布は、[http://mouse.brain-map.org/experiment/show/70719651 非筋肉型コフィリン]、[http://mouse.brain-map.org/experiment/show/74357607 筋肉型コフィリン]、[http://mouse.brain-map.org/experiment/show/69671630 ADF]の3種類のいずれかが全ての細胞に発現しており、[[wikipedia:ja:筋肉|筋肉]]では、主に筋肉型コフィリンが主に発現している<ref><pubmed>8195165</pubmed></ref>。筋組織以外では非筋肉型コフィリンとADFが主に発現している<ref name="ref6"><pubmed>11809832</pubmed></ref><ref name="ref2" />。コフィリンは[[トロポミオシン]]や[[ミオシン]]と競合的にF-アクチンに結合するため<ref name="ref1" /><ref><pubmed>11901171</pubmed></ref>、コフィリンが多く存在する[[ラメリポディア]]や局在がほとんど見られないストレスファイバーなど、アクチン骨格への結合量はアクチン骨格構造によって異なる。しかし、コフィリンの活性阻害実験から、細胞内のアクチン骨格構造はすべてコフィリンの結合により脱重合されることでターンオーバーしていると考えられる<ref><pubmed>15548599</pubmed></ref><ref><pubmed>21868383</pubmed></ref>。


== アクチン骨格再構築おける機能 ==
==生理活性==
===アクチン骨格再構築おける機能 ===


 細胞内における基本的なコフィリンの機能は、F-アクチンを切断・脱重合し、重合するためのG-アクチンを供給することでアクチン骨格の流動性を生みだす働きである。そのため、コフィリンの活性化はF-アクチンを切断・脱重であるにも関わらずラメリポディア形成などのアクチン重合に必須である。
 細胞内における基本的なコフィリンの機能は、F-アクチンを切断・脱重合し、重合するためのG-アクチンを供給することでアクチン骨格の流動性を生みだす働きである。そのため、コフィリンの活性化はF-アクチンを切断・脱重であるにも関わらずラメリポディア形成などのアクチン重合に必須である。
48行目: 49行目:


===活性調節===
===活性調節===
 コフィリンのアクチン脱重合・切断活性に対する制御は、[[ホスファチジルイノシトール4、5ビスリン酸]]([[PIP2]])との結合によるアクチンへの結合阻害、3番目の[[wikipedia:ja:セリン|セリン]]残基の[[リン酸]]化によるアクチンへの結合阻害、[[Actin interacting protein 1]]([[Aip1]])、[[アデニル酸シクラーゼ結合タンパク質]]([[CAP]])との結合による活性促進の制御が報告されている(図2)<ref name="ref2" /><ref name="ref4" />。PIP2との結合によるコフィリンの活性阻害では、細胞への刺激依存的な[[ホスホリパーゼ C]]([[Phospholipase C]]、[[PLC]])の活性化によってPIP2が分解されコフィリンの活性化を促進しラメリポディア形成などが促進されることが報告されている<ref><pubmed>15337778</pubmed></ref><ref><pubmed>18086920</pubmed></ref>。
 コフィリンのアクチン脱重合・切断活性に対する制御は、[[ホスファチジルイノシトール|ホスファチジルイノシトール4、5ビスリン酸]]([[ホスファチジルイノシトール|PIP2]])との結合によるアクチンへの結合阻害、3番目の[[wikipedia:ja:セリン|セリン]]残基の[[リン酸化]]によるアクチンへの結合阻害、[[Actin interacting protein 1]]([[Aip1]])、[[アデニル酸シクラーゼ結合タンパク質]]([[CAP]])との結合による活性促進の制御が報告されている(図2)<ref name="ref2" /><ref name="ref4" />。PIP2との結合によるコフィリンの活性阻害では、細胞への刺激依存的な[[ホスホリパーゼ C]]([[Phospholipase C]]、[[PLC]])の活性化によってPIP2が分解されコフィリンの活性化を促進しラメリポディア形成などが促進されることが報告されている<ref><pubmed>15337778</pubmed></ref><ref><pubmed>18086920</pubmed></ref>。


====リン酸化====
 コフィリンを不活性化する3番目のセリン残基のリン酸化を行う特異的な[[タンパク質リン酸化酵素]]として[[LIMキナーゼファミリー]]([[LIMK1]]、[[LIMK2]]、[[TESK1]]、[[TESK2]])が同定されている<ref><pubmed>9655398</pubmed></ref><ref><pubmed>11294912</pubmed></ref>。LIMキナーゼファミリーは、N末端にLIMドメインを持つLIMK1、LIMK2とLIMドメインは持たないがキナーゼドメインの相同性が高く保存されたTESK1、TESK2が存在する。LIMK1は発達過程の中枢神経系に高発現している<ref name="ref5" />。
 コフィリンを不活性化する3番目のセリン残基のリン酸化を行う特異的な[[タンパク質リン酸化酵素]]として[[LIMキナーゼファミリー]]([[LIMK1]]、[[LIMK2]]、[[TESK1]]、[[TESK2]])が同定されている<ref><pubmed>9655398</pubmed></ref><ref><pubmed>11294912</pubmed></ref>。LIMキナーゼファミリーは、N末端にLIMドメインを持つLIMK1、LIMK2とLIMドメインは持たないがキナーゼドメインの相同性が高く保存されたTESK1、TESK2が存在する。LIMK1は発達過程の中枢神経系に高発現している<ref name="ref5" />。


 これに対して、特異的なコフィリンの[[タンパク質脱リン酸化酵素]]として[[Slingshot]]ファミリー([[Slingshot-1]]、[[Slingshot-2]][[Slingshot-3]])が同定されている<ref><pubmed>11832213</pubmed></ref>。これ以外に[[protein phosphatase 1]][[PP1]])、[[protein phosphatase 2A]]([[PP2A]])、[[ハロ酸デヒドロゲナーゼ]]の一つでタンパク質脱リン酸化酵素として働く[[Chronophin]]が脱リン酸化酵素として働くことが報告されている<ref><pubmed>11093160</pubmed></ref><ref><pubmed>15580268</pubmed></ref><ref name="ref5" />。
 LIMキナーゼは、[[Rhoファミリー低分子量Gタンパク質]]、[[Ca2+|Ca<sup>2+</sup>]]シグナル、p38[[MAPキナーゼ]]など様々な上流シグナルによって活性が制御されている。SlingshotもCa<sup>2+</sup>シグナル、Rhoファミリー低分子量Gタンパク質、[[PI3キナーゼ]]、F-アクチンとの結合によって活性化される(図3)<ref name="ref5" />。また、[[Phospholipase D1]]([[PLD1]])に対してリン酸化コフィリンが結合しPLD1を活性化することで[[Rac]]の活性化を促進することも報告されている<ref><pubmed>17853892</pubmed></ref>。


 コフィリンのリン酸化制御は、進化的に[[wikipedia:ja:ショウジョウバエ|ショウジョウバエ]]以降で保存されており、[[wikipedia:ja:線虫|線虫]]、酵母にはLIMキナーゼ、Slingshotに相同な遺伝子は存在しない。
 コフィリンのリン酸化制御は、進化的に[[wikipedia:ja:ショウジョウバエ|ショウジョウバエ]]以降で保存されており、[[wikipedia:ja:線虫|線虫]]、酵母にはLIMキナーゼ、Slingshotに相同な遺伝子は存在しない。


 LIMキナーゼは、[[Rhoファミリー低分子量Gタンパク質]][[Ca2+]]シグナル、p38[[MAPキナーゼ]]など様々な上流シグナルによって活性が制御されている。SlingshotもCa2+シグナル、Rhoファミリー低分子量Gタンパク質、[[PI3キナーゼ]]、F-アクチンとの結合によって活性化される(図3)<ref name="ref5" />。また、[[Phospholipase D1]]([[PLD1]])に対してリン酸化コフィリンが結合しPLD1を活性化することで[[Rac]]の活性化を促進することも報告されている<ref><pubmed>17853892</pubmed></ref>。個体においては、角膜疾患マウスの原因遺伝子としてADF遺伝子の点変異が同定されている<ref><pubmed>12700171</pubmed></ref>。また、コフィリンの[[ノックアウトマウス]]は胎生致死となる<ref name="ref9"><pubmed>17875668</pubmed></ref>。その他に、コフィリンは[[アポトーシス]]の初期において[[wikipedia:ja:ミトコンドリア|ミトコンドリア]]に局在しアポトーシスを誘導することが報告されている<ref><pubmed>14634665</pubmed></ref>。     
====脱リン酸化====
 特異的なコフィリンの[[タンパク質脱リン酸化酵素]]として[[Slingshot]]ファミリー([[Slingshot-1]][[Slingshot-2]]、[[Slingshot-3]])が同定されている<ref><pubmed>11832213</pubmed></ref>。これ以外に[[protein phosphatase 1]]([[PP1]])、[[protein phosphatase 2A]]([[PP2A]])、[[ハロ酸デヒドロゲナーゼ]]の一つでタンパク質脱リン酸化酵素として働く[[Chronophin]]が脱リン酸化酵素として働くことが報告されている<ref><pubmed>11093160</pubmed></ref><ref><pubmed>15580268</pubmed></ref><ref name="ref5" />。
 
 
個体においては、角膜疾患マウスの原因遺伝子としてADF遺伝子の点変異が同定されている<ref><pubmed>12700171</pubmed></ref>。また、コフィリンの[[ノックアウトマウス]]は胎生致死となる<ref name="ref9"><pubmed>17875668</pubmed></ref>。その他に、コフィリンは[[アポトーシス]]の初期において[[wikipedia:ja:ミトコンドリア|ミトコンドリア]]に局在しアポトーシスを誘導することが報告されている<ref><pubmed>14634665</pubmed></ref>。   


== 神経細胞における役割  ==
== 神経細胞における役割  ==

案内メニュー