229
回編集
細編集の要約なし |
細編集の要約なし |
||
9行目: | 9行目: | ||
== 作用機序 == | == 作用機序 == | ||
転写制御因子がエンハンサーに結合すると、メディエーター(mediator)、ヒストンアセチルトランスフェラーゼ(histone acetyltransferases; HATs)、およびクロマチン再構成複合体(chromatin remodeling complex)が転写制御因子に結合する(6)(7)。 | 転写制御因子がエンハンサーに結合すると、メディエーター(mediator)、ヒストンアセチルトランスフェラーゼ(histone acetyltransferases; HATs)、およびクロマチン再構成複合体(chromatin remodeling complex)が転写制御因子に結合する(6)(7)。 メディエーターは、約30のサブユニットからなるタンパク質複合体で、プロモーターに結合した転写基本因子(TFIID、TFIIA)とエンハンサーに結合した転写制御因子の双方に結合する。すると、転写基本因子、メディエーターならびにプロモーターにRNAポリメラーゼIIが結合できるようになり、転写が開始する(6)(8)(9)。 一方、HATsとクロマチン再構成複合体は、エンハンサーおよびプロモーター周辺のクロマチンの状態を変更する。HATsのうち、CBPおよびp300は、エンハンサーにおけるコアヒストンのN末端をアセチル化する(10)(11)。さらに、アセチル化されたヒストンは、クロマチン再構成複合体が結合する足場となることがある(12)。クロマチン再構成複合体は、ATP依存的にDNAからヌクレオソームを取り除く(13)(14)。このようにクロマチンの状態が変更されると、一般的に、転写基本因子とメディエーターならびにRNAポリメラーゼがプロモーター上で集合しやすくなり、転写が促進される。 | ||
エンハンサーにおけるヒストンの状態は他の領域とは異なっており、転写制御に影響していると考えられている。ヒトのエンハンサーでは、ヒストンH3の4番目のリジンがメチル化され(H3K4me1/ H3K4me2)、27番目のリジンがアセチル化されていることが多い(H3K27ac)(15)。さらに、H3.3やH2A.Zと呼ばれる特別なヒストンを含むヌクレオソームが存在する(16)。これは通常のヌクレオソームより不安定で、転写制御因子がこのヌクレオソームに置き換わってDNAに結合しやすくなると考えられている。さらに、エンハンサーの活性状態によって、ヒストンの修飾が異なる例が報告されている。ヒトおよびマウスのES細胞では、活性化しているエンハンサーでは、ヒストンH3の27番目のリジンがアセチル化されているが(H3K27ac)、不活化されているエンハンサーでは、メチル化されている(H3K27me3)ことが知られている(17)。<br> 最近になって、enhancer RNA (eRNA)とよばれるRNAがエンハンサーにおいて双方向に転写されて産生されることが見いだされた(18)。eRNAはタンパク質をコードせず、ポリアデニル化されない。エンハンサーが機能するときに産生されるが、エンハンサーの機能に関与しているかどうかは、まだよくわかっていない。一方、100塩基長以上の長さを持つノンコーディングRNA(lncRNA)が転写を調節する場合がある(19)。このlncRNAのほとんどは、一方向に転写されることにより産生され、ポリアデニル化される。このlncRNAをsiRNA法で阻害すると、近傍の遺伝子の転写が抑制される。lncRNA遺伝子をリポーター遺伝子と連結すると、lncRNA遺伝子の方向に関係なくリポーター遺伝子の転写が活性化される。ncRNAが転写を誘導する詳しいメカニズムはまだよくわかっていない。ENCODEプロジェクトによると、これまで「junk DNA」であると考えられていたヒトゲノムの領域から、9640のlncRNAが転写されることがわかった(20)。これらのlncRNAもまた、遺伝子の発現を制御している可能性がある。<br> | エンハンサーにおけるヒストンの状態は他の領域とは異なっており、転写制御に影響していると考えられている。ヒトのエンハンサーでは、ヒストンH3の4番目のリジンがメチル化され(H3K4me1/ H3K4me2)、27番目のリジンがアセチル化されていることが多い(H3K27ac)(15)。さらに、H3.3やH2A.Zと呼ばれる特別なヒストンを含むヌクレオソームが存在する(16)。これは通常のヌクレオソームより不安定で、転写制御因子がこのヌクレオソームに置き換わってDNAに結合しやすくなると考えられている。さらに、エンハンサーの活性状態によって、ヒストンの修飾が異なる例が報告されている。ヒトおよびマウスのES細胞では、活性化しているエンハンサーでは、ヒストンH3の27番目のリジンがアセチル化されているが(H3K27ac)、不活化されているエンハンサーでは、メチル化されている(H3K27me3)ことが知られている(17)。<br> 最近になって、enhancer RNA (eRNA)とよばれるRNAがエンハンサーにおいて双方向に転写されて産生されることが見いだされた(18)。eRNAはタンパク質をコードせず、ポリアデニル化されない。エンハンサーが機能するときに産生されるが、エンハンサーの機能に関与しているかどうかは、まだよくわかっていない。一方、100塩基長以上の長さを持つノンコーディングRNA(lncRNA)が転写を調節する場合がある(19)。このlncRNAのほとんどは、一方向に転写されることにより産生され、ポリアデニル化される。このlncRNAをsiRNA法で阻害すると、近傍の遺伝子の転写が抑制される。lncRNA遺伝子をリポーター遺伝子と連結すると、lncRNA遺伝子の方向に関係なくリポーター遺伝子の転写が活性化される。ncRNAが転写を誘導する詳しいメカニズムはまだよくわかっていない。ENCODEプロジェクトによると、これまで「junk DNA」であると考えられていたヒトゲノムの領域から、9640のlncRNAが転写されることがわかった(20)。これらのlncRNAもまた、遺伝子の発現を制御している可能性がある。<br> |
回編集